

Pain Point workshops

Scoping more in-depth common challenges and needs of Climate services using EO

PROTECT consortium

12 & 13 September 2023

This project has received funding from the Horizon Europe Framework Programme (HORIZON) under grant agreement No 101060592

- 1. Introduction: context, objectives and methodology
- 2. Results of the spring Pain Point workshops
- 3. 4 Challenges from a Climate policy perspective and the potential EO
- 4. Preliminary SOTA analysis
- 5. Challenge in-depth and scoping needs
- 6. Open discussion
- 7. Conclusions and next steps

Introduction

Context, objectives and methodology

2nd Pain Point workshops

12th and 13th September 2023

Introduction: context, objectives and methodology

1. Context:

 PROTECT is setting the grounds to prepare a proposal for the HE PCP HORIZON-CL6-2024-GOVERNANCE-01-15 (€ 19 million) call building on outcomes from GEOSS initiatives and PROTECT.

2. Objectives:

- Validate and further scope the common needs.
- Identify other use cases under the challenges.
- Define the participants of the public buyers group.

3. Today's methodology:

- Brief recap of the spring workshops results and SOTA analysis.
- Challenge presentation and interactive discussions.
- Q&A methodology.

Expected outcomes of the PCP call

- Customisation/pre-operationalisation of prototypes end-user services in the area Climate Change Adaptation and Mitigation, building on the Copernicus Services that respond to the common needs and beyond state-of-the-art performance targets of the buyers group;
- Reduction of fragmentation of demand for innovative solutions by enabling public procurers to
 collectively implement a Pre-Commercial Procurement (PCP) in the area of climate adaptation and
 mitigation, which, due to their nature, are better addressed jointly, or which they would not have been
 able to tackle independently;
- New opportunities for wide market uptake and economies of scale for the supply side through the use of joint specifications, wide publication of results and – where relevant – contribution to standardization, regulation or certification to remove barriers for introduction of innovations into the market and creation of new products, processes and/or services ready for market uptake, leading to viable new businesses, jobs and sustainable economic growth.

Pain Point workshop results

Use cases - Functional description - keywords

2nd Pain Point workshops

12th and 13th September 2023

Marine and Coastal environment

Marine and Coastal Environment: Is this use case relevant to your organization?

	Ans	wers Ratio
Yes	10	50 %
No	5	25 %
Perhaps	4	20 %
No Answer	1	5 %

Identified functionalities : 1. Rapid and reliable mapping of flooded areas for planning, preventing, predicting and post event intervention and cooperation.

	Answers	Ratio
Yes	14	70 %
No	2	10 %
Perhaps	3	15 %
No Answer	1	5 %

Sustainable Urban Communities

Step

As is (present) situation

Facilities where waste is stored can suffer spontaneous fires 3 or more times a year. This happens especially in summer when the temperatures are higher. At present, although there is data on previous events, there is **no automated solution to predict fires** and take decisions to prevent them. Inspectors of environmental agencies monitor the facilities resulting in quite an effort for staff.

1 Step 2 Step 3 Step 4 Step 5

- 1. Explore the technical borders to understand what is possible in order to provide frequent data updates, and establish the frequency for preparedness.
- Develop a model out of (all) existing and new data for prediction of waste fires. Data aggregation, including all data from past waste fire situations can be useful.
- Train the model based on defined conditions, relevant factors(e.g. evolving composition of waste through time, temperature)
- 4. Anticipate fire using data.
- 5. Notify action to prevent a fire timely.

Desired dreamed (future) situation

Automated notification of risk of fire so that the environmental agencies can take measures, such as contacting companies/industry that has/manage waste storage facilities, help **prevent** air pollution and damages.

Sustainable Urban Communities: Is this use case relevant to your organization?

	Answers	Ratio	
Yes	8	40 %	
No	4	20 %	
Perhaps	8	40 %	
No Answer	0	0 %	

Keywords: Automated notification, waste fire, modelling, prediction, data aggregation.

Identified functionalities : 2. Thermal monitoring and predicting waste fire to avoid spontaneous ignition in waste storages and air pollution, using automated notification of risk of fire based on the modelling of certain conditions (like the level of humidity, air temperature, height of the pile of waste, etc.).

	Answers	Ratio
Yes	7	35 %
No	5	25 %
Perhaps	5	25 %
No Answer	3	15 %

Civil Security and Protection

As is (present) situation

Waste is dumped illegally and it is difficult for law enforcement agencies to trace the responsible of criminal behaviour. It is also not possible to inform and prevent the flow of the waste cross-borders. There is no data which can be used in criminal proceedings as proof.

Step 1 Step 2 Step 3 Step 4 Step 5

- 1. Examine current monitoring possibilities.
- 2. Define the type of substances illegally dumped in water based on previous experience and also the measures being taken in specific cases.
- 3. Notify timely environmental agencies, fire fighters and other relevant law enforcement agencies on potential risks and results.
- 4. Define possible interventions on site to prevent dumping and further damage.
- 5. Standardize the reports and data to be admissible in a civil and criminal court.

Desired dreamed (future) situation

Alerts are sent to competent authorities to prevent the illegal dumping of waste in the water and to inform of a possible risk preventing further (cross-border) damage. Standardized reports and information can serve in civil and criminal proceedings to establish responsibilities upon the applicable law in a specific judiciary system.

Identified functionalities : 3. Identifying illegal dumping of waste in water and sending automated alerts to law enforcement agencies to prevent the flow of waste causing cross-border damages, and producing standardized reports that can serve as proof of responsibility in (criminal) judicial proceedings.

	Ansv	vers Ratio
Yes	8	40 %
No	6	30 %
Perhaps	4	20 %
No Answer	2	10 %

Keywords: Monitoring, waste dumping, toxic substances, notification, intervention, pollutants. Vegetation changes, traceability, identification of responsibility

Civil Security and Protection: Is this use case relevant to your organization?

	Answers	Ratio
Yes	9	45 %
No	6	30 %
Perhaps	5	25 %
No Answer	0	0 %

Energy and Utilities

As is (present) situation

The demand for sweet water is unpredictable. The supply and demand of sweet water is not connected. There are regulations determining the use of water from channels, treated water from the sewage and drinking water (in each EU Member State). There is no common language among different stakeholders in the water cycle chain. There is a lot of data in certain regions but the data hubs or repositories are not connected.

Step 1 Step 2 Step 3 Step 4

- 1. Understand what is happening at present and the mechanisms in place (also from a policy perspective). Learn how the problem of drought regarding supply and demand of water is addressed, to define the type of new services that support coping with stress situations based on a common language. Understand which are the relevant responsible public authorities and users. Also, identify the data gaps.
- 2. Develop a system that combines data and uses AI for modelling.
- Use database driven solutions to improve the distribution of water (e.g. identify saline concentration, pollution, substances, algea, etc.)
- 4. Provide information to water authorities that need to know how to collect, when and how to distribute water (treated in a certain way) to supply the specific demand, and avoid discharging sweet water.
 - Build a resilient system where different stakeholders (water companies, farmers, industry) cooperate during drought.

Identified functionalities : 4. Predicting the demand for sweet water from different users aimed at connecting the supply and demand of water for diverse uses (such as farming) in the water value chain to tackle periods of drought.

5.

	Answers	Ratio
Yes	9	45 %
No	5	25 %
Perhaps	3	15 %
No Answer	3	15 %

Keywords: Drought, AI for modelling, data combination, water demand and supply connection, water quality, distribution.

Desired dreamed (future) situation

The demand for sweet water is **predictable.** The regulatory landscape and policies are clearly defined. The system can cope with stress situations based on data for informed decision making and interventions. Supply and demand for sweet water are connected based on needs of diverse users (e.g., famers, companies, industry) and the understanding on the conditions and water quality required for different purposes. Decision and guidance from a policy perspective is achieved to understand the consequences and combine relevant data in the whole water chain cycle under a taxonomy.

Energy and Utiities: Is this use case relevant to your orhganization?

Step 5

	Answers	Ratio
Yes	10	50 %
No	5	25 %
Perhaps	5	25 %
No Answer	0	0 %

Agriculture, Forestry and other Land Use

Keywords: Automated analysis, climate resilience plans, Al scenarios, forest and land, prediction, salinity, reproductivity.

Agriculture, Forestry and other Land use: Is this use case relevant to your organization?

	Answers	Ratio
Yes	11	55 %
No	4	20 %
Perhaps	4	20 %
No Answer	1	5 %

Identified functionalities : 5.Detecting climate vulnerability in the face of challenges like salinity affecting reproductivity of vegetation, through automated analysis that supports the decision of experts in preparing resilience plans.

	Answers	Ratio	
Yes	8	40 %	
No	5	25 %	_
Perhaps	5	25 %	
No Answer	2	10 %	

EU Survey results

Please prioritize the above functionalities based on the needs of your organization.

	1	2	3	4	5	Score
1. Rapid mapping of floods	35.29%	47.05%	11.76%	5.88%	0.0%	4.11
	12	16	4	2	0	34
2. Predicting (waste) fire	5.88%	11.76%	29.41%	23.52%	29.41%	2.41
	2	4	10	8	10	34
3. Identifying ilegal dumping of waste	17.64%	5.88%	0.0%	41.17%	35.29%	2.29
and tracing	6	2	0	14	12	34
4. Predicting the demand for water to	11.76%	23.52%	29.41%	17.64%	17.64%	2.94
match supply and demand (specially in drought)	4	8	10	6	6	34
5. Detecting climate vulnerability to	29.41%	11.76%	29.41%	11.76%	17.64%	3.23
prepare resilience plans	10	4	10	4	6	34
No Answer	-70 % -14					

What is the best approach to prioritise the <u>four</u> challenges?

- Higher score
- Commitment from CAs to pursue the challenge
- Mixed approach

7 Possible challenges for the PCP

Resulting from cross-cutting analysis and consultations with procurers (pain point workshops, surveys, one to one exchanges)

1. Predicting the 'sweet' water demand to match supply & demand	2. Flood areas fro	ding in coastal and flooding om rivers	3. Predicting waste fires		4. Illegal dumping of waste and tracing
5. Detecting cli vulnerability to p resilience pla	mate repare ans	6. Building a resilien infrasti	and restoring It cities' ructure	7. Pre & CO	dicting peak traffic times 2 emissions by types of transportation

Next steps: Follow up discussions with lead procurers to form consortia of buyers around these topics, screening of relevant providers to prepare e-pitching sessions and Open Market Consultations in Fall.

Selected 4 Challenges – across domains

- FLOODS mapping and prediction
- **FIRE** prediction & prevention (tracing, identifying e.g. illegal waste dump fires);
- Climate resilient WATER solutions (predicting, collecting data, planning);
- SUSTAINABLE & RESILIENT INFRASTRUCTURE in vulnerable urban & regional areas (integrated sustainable re-development, restoring & adaptation of old and existing buildings).

SELECTION CRITERIA: intention of lead procurer, interested public buyers, climate change impact, TRL 3-5, cross-border relevance.

Climate Change

Policy perspective

2nd Pain Point workshops

12th and 13th September 2023

Climate Services

- Climate services are customised solutions that transform climate-related data together with other relevant information to help address a wide range of needs.
- They include for instance projections, forecasts, economic analyses, assessments, counselling on best practices, or any other solution or service in relation to climate that may be of use for the society at large.
- Because CS allow all categories of end-users to access and action relevant climate-related data, climate services are essential to support their needs related to climate mitigation and adaptation.
- The potential for new, innovative, connected climate services is untapped.

Floods in regional adaptation

- Flood risks figure prominently in major risk assessments and adaptation strategies in regions across Europe:
 - a) Marine & coastal: Flooding risks in almost all coastal regions: sea level rise [Med FR,ES,northern IT,northern DE,PL], marine submersion [North and Baltic seas,ES-n,IT-n,FR-se], extreme rainfall, thunderstorms and gales [PL,ES-n], combinations of those factors [DE-n,ES-n,NL,LT,FR-w]
 - b) Sustainable urban communities: Risk of flooding in urban areas (heavy rainfall, river overflow, marine submersion, sea level rise), aggravated by soil degradation, itself amplified by droughts [BE,NL, IT,PL,FR]
 - c) Energy & utilities: multiplication of flooding (extreme rainfall, sea level rise) to disrupt energy production [DE,LT,PL]; risk of landfill flooding [LT]
 - d) Agriculture, forestry and other land use: Negative impact on land use from floodings combined with droughts, heavy rains, storms [IT-n,ES-n,LT,PL]; increasing flooding risk in agricultural areas [FI,DE-e,IT-w/n,FR]

Legal texts of reference at EU and national levels

• EU foundational documents:

- a) EU Floods directive (2007)
- b) EU Waste Framework Directive (2008)
- c) EU Water Framework Directive (2000)
- d) EU Strategy on Adaptation to Climate Change (2021)

• At national levels:

- a) Water laws/acts or amendments thereof; flood risk management plans
- b) Laws/acts on waste, waste management
- c) River basin management plans (RBMPs)
- d) National and regional climate adaptation strategies and action plans

This is also a dynamic process with cycles and multiple iterations

Legal texts relevant to the Floods challenge (EU level)

The EU Floods Directive

- Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (publ. 6 November, 2007)
- Each EU country is required to assess all areas under risk of significant floods, to create Flood Hazard Maps and Flood Risk Maps for such areas in terms of possible flood extent and assets & humans at risk, and to take adequate and coordinated measures to reduce flood risk
- The general public must have access to this information and a say in the planning process
- The Floods Directive is closely coordinated with the Water Framework
 Directive

Legal texts relevant to the Floods challenge (nat'l level)

Transposing the EU Floods Directive

- The Directive was transposed into national laws mostly between 2008 and 2010
- In most cases, this appeared either within new Water Laws, Water Acts, or updates / amendments of the current ones
- In complement: national flood risk management plans; plans at the level of regions / river basins / sub-regions
- Working Group set up within CIRCABC to support implementation of both the Floods Directive and the Water Framework Directive
- 6-year cycles to reduce the risk of flood damage: 1st cycle 2010-2015, 2nd cycle 2016-2021, 3rd cycle 2022-2027; results from 2nd cycle reported for 19 countries, public consultation concluded in 5 more, 3 ongoing or delayed

Fires in regional adaptation

- Fire risks figure prominently in major risk assessments and adaptation strategies in regions across Europe:
 - a) Sustainable urban communities: sharply increasing fire and wildfire risks in virtually every country, strongly amplified by heatwaves and urban heat islands
 - b) Energy & utilities: increased risk of landfill fires [e.g. LT]
 - c) Agriculture, forestry and other land use: fast-increasing risk of fires [BE,FI-s,IT-n/c,FR,DE,ES,,,]

Legal texts of reference at EU and national levels

• EU foundational documents:

- a) EU Floods directive (2007)
- b) EU Waste Framework Directive (2008)
- c) EU Water Framework Directive (2000)
- d) EU Strategy on Adaptation to Climate Change (2021)

• At national levels:

- a) Water laws/acts or amendments thereof; flood risk management plans
- b) Laws/acts on waste, waste management
- c) River basin management plans (RBMPs)
- d) National and regional climate adaptation strategies and action plans

This is also a dynamic process with cycles and multiple iterations.

Legal texts relevant to the Fire challenge (EU level)

The EU Waste Framework Directive

- Directive 2008/98/EC of the European Parliament and of the Council of 19
 November 2008 on waste
- Basic principles include waste management to avoid endangering human health, harming the environment, creating risks for water, air, soil, plants, animals, causing a nuisance through noise or odours
- It is built on a 5-step waste hierarchy: prevention > preparing for re-use > recycling > recovery > disposal
- It sets targets to every EU country
- There is a strong emphasis on circular economy objectives, which is prominently reflected in several national laws
- However, very limited reference is made to fire risks and illegal dumping, and generally to climate dimensions

Legal texts relevant to the Fire challenge (nat'l level)

Waste related texts

- Almost all EU countries have a Law on Waste or on Waste Management
- In a few cases, waste regulations are part of a broader environmental conservation law (France, Greece, the Netherlands)
- In Belgium and in Italy for instance, the waste sector is regulated by a set of more specific texts; in some cases, most of the regulations are at regional level (e.g. Austria)
- General waste regulations tend to be explicit on the categories of waste, specific risks, technical requirements, prevention of pollution; in contrast, they say little or nothing explicit about fire risks, only a few mention illegal dumping, and the link with climate change issues is not mentioned

Water issues in regional adaptation

- Water quality and availability risks figure prominently in major risk assessments and adaptation strategies in regions across Europe:
 - a) Marine & coastal: Quality degradation of coastal waters [FR], increased saltwater intrusions, salinization, freshwater shortages [FR-w,IT-c,ES,NL], decreased water quality [LT,IT-c], eutrophication of water bodies, damaged ecosystem services (ES-n,IT-c,DE-n]
 - b) Sustainable urban communities: Water quality and quantity affecting a.o. energy and utilities [southern Europe, now also concerning BE,NL,DE-s]
 - c) Energy & utilities: Increased frequency of droughts and of heatwaves [LT,PL,BE,DE,ES,FR,IT] with consequences on water quality and quantity;
 - Agriculture, forestry and other land use: More frequent and longer droughts [DE,IT-n,NL,ES], often coupled with water quality and quantity concerns [BE,IT,ES-n,FR,LT], competition for water between urban and agricultural use; threats of lower water recharge and decrease in aquifer levels [FR-se,IT-s,ES,NL], risks on pastures and fodder [PL]; reduced river flows, higher transpiration and water stress [ES,FR]; impacts aggravated as more frequent or abundant irrigation required in agriculture [DE-w,IT-n,ES]

Legal texts of reference at EU and national levels

• EU foundational documents:

- a) EU Floods directive (2007)
- b) EU Waste Framework Directive (2008)
- c) EU Water Framework Directive (2000)
- d) EU Strategy on Adaptation to Climate Change (2021)

• At national levels:

- a) Water laws/acts or amendments thereof; flood risk management plans
- b) Laws/acts on waste, waste management
- c) River basin management plans (RBMPs)
- d) National and regional climate adaptation strategies and action plans

This is also a dynamic process with cycles and multiple iterations.

Legal texts relevant to the Water challenge (EU level)

The EU Water Framework Directive

- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy
- Latest version published in 2014; adaptation to climate change not included in the Directive itself but agreement from Member States in 2009 to integrate it in the 6-year River Basin Management Plans (RBMPs) elaborated under the WFD – *cf.* "River basin management in a changing climate - a Guidance document"
- Each EU Member State is required to use their RBMPs and Programmes of Measures to protect and, where necessary, restore water bodies in order to reach good status (chemical and ecological), and to prevent deterioration
- The Floods Directive is closely coordinated with the Water Framework Directive
- Forging a climate-resilient Europe the new EU Strategy on Adaptation to Climate Change refers to water (and particularly freshwater) availability and sustainability notably in its section 2.3.4

Legal texts relevant to the Water challenge (nat'l level)

Transposing the EU Water Framework Directive

- The Directive is implemented primarily through the RBMPs
- Some of the RBMPs are transnational (e.g. Danube, Elbe, Oder, Rhine, Sava) and are closely articulated with water policies in the different countries involved
- Each EU Member State is covered by between 1 and 14 RBMPs, managed at national or regional levels; some of the RBMPs ae not literally centred on one river and cover a hydrographic unit or region
- RBMP process includes identification of "significant water management issues" and broad public consultations
- Working Group set up within CIRCABC to support implementation of both the Floods Directive and the Water Framework Directive
- 6-year cycles: 1st cycle 2010-2015, 2nd cycle 2016-2021, 3rd cycle 2021/22-2027

Sustainable infrastructure in regional adaptation

- Risks to sustainable infrastructure figure prominently in major risk assessments and adaptation strategies in regions across Europe:
 - Marine & coastal: Flooding risks in almost all coastal regions: sea level rise [Med FR,ES,northern IT,northern DE,PL], marine submersion [North and Baltic seas,ES-n,IT-n,FR-se], extreme rainfall, thunderstorms and gales [PL,ES-n], combinations of those factors [DE-n,ES-n,NL,LT,FR-w]
 - b) Sustainable urban communities: Swelling and shrinking soils resulting from hydrogeological instability [IT,FR-s], creating vulnerability for building foundations in urban areas, landslide risks
 - c) Energy & utilities: Increased frequency of droughts and of heatwaves [LT,PL,BE,DE,ES,FR,IT] with indirect impacts of water scarcity or hotter waters on e.g. energy production; consequences of ocean acidification on infrastructures [FR-w]; extreme events and longer term processes threatening railways and roads [FR]; coupled issues on water availability / quality and energy production [large cities]

Legal texts of reference at EU and national levels

• EU foundational documents:

- a) EU Floods directive (2007)
- b) EU Waste Framework Directive (2008)
- c) EU Water Framework Directive (2000)
- d) EU Strategy on Adaptation to Climate Change (2021)

• At national levels:

- a) Water laws/acts or amendments thereof; flood risk management plans
- b) Laws/acts on waste, waste management
- c) River basin management plans (RBMPs)
- d) National and regional climate adaptation strategies and action plans

This is also a dynamic process with cycles and multiple iterations.

Elements from EU's Climate Adaptation Strategy relevant to the Sustainable Infrastructure challenge

- Forging a climate-resilient Europe the new EU Strategy on Adaptation to Climate Change (publ. 24 February, 2021)
- Systemic approach to support the further development and implementation of adaptation strategies and plans at all levels of governance; cross-cutting priorities: integrating adaptation into macro-fiscal policy, nature-based solutions for adaptation, and local adaptation action
- Support implementing nature-based solutions (NBS) on a larger scale, notably blue-green infrastructures, and the development of financial approaches and products that also cover nature-based adaptation
- Support the development of rapid response decision support tools to enrich the toolbox for adaptation practitioners
- Support the integration of climate resilience considerations into the criteria applicable to construction and renovation of buildings and critical infrastructure

Sustainable infrastructure – a space for multiple systemic interactions

Building
Street
Trees
Solar water heating
"Multi-functional" green wall
"Multi-functional" roof garden
Storm water harvesting and recycling
Food production
Ground water aquifer
Constructed wetland
Pocket park
Urban streams and ponds

Credits: Blue Green Solutions / Imperial College London, EIT Climate-KIC

The Potential of EO

In the 4 Challenges

2nd Pain Point workshops

12th and 13th September 2023

What is Earth Observation?

Credits: ESA - Earth observation data access portal

According to European Space Agency (ESA), Earth Observation (EO) is defined as the process of acquiring observations of the Earth's surface and atmosphere via sensors mounted on satellites, aircrafts, drones or at the surface, resulting in data in the form of digital imagery.

Two supporting technologies enable this intermediate step of processing EO data:

- artificial intelligence (AI)
- cloud computing

Copernicus Programme

- One of the largest EO programme managed by the European Commission
- Monitor and forecast the state of the environment on land, sea and in the atmosphere
- Support climate change mitigation and adaptation strategies
- Efficient management of emergency situations and the improvement of the security of every citizen
- Applications of EO data from the Copernicus programme

Credits: À propos de Copernicus | Copernicus

What is the role of Earth Observation in climate services (CS)?

Credits: Earth observation big data for climate change research - ScienceDirect

- > EO data is playing a crucial role
- Satellites provide vital information regarding the state, evolution of the environment and human activities on Earth
- > CS support the governments and businesses

How can climate services apply to the 4 challenges?

FLOODS Challenge - Example of Usage

Category: Inland Waterways

Example of usage: Inland Waterways

List of applications: EO data is used to detect periods of flood or low flow which may cause disruptions to waterway traffic, allowing the bodies responsible for the inland waterways to make informed decisions about traffic flows.

Credits: <u>The 2022 Market report is now available for</u> <u>download! | EU Agency for the Space Programme</u> (europa.eu) Credits: Monitoring Marine Coastal Hazards with Earth Observations and Copernicus Data | CMEMS

FIRE Challenge - Example of Usage

Category: Civil security and protection

Example of usage: Monitoring of wildfires

List of applications: The increasing availability of Earth Observation (EO) data combined with the advanced analytics provided by Artificial Intelligence (AI) and Machine Learning (ML), along with the exceptional processing power of cloud computing can generate a service that can map fires and also provide fast, reliable and accessible information as required by the wildfire fighting community.

Credits: Artificial intelligence for Earth observation: monitoring of wildfires - eo science for society (esa.int)

Climate resilient Water - Example of Usage

Category: Agriculture, Forestry and Other Land Uses

Example of usage: Water Scarcity

List of applications: Data from the Sentinel-2 mission are key to the Copernicus Land Monitoring Service, which provides geographical information on land cover and its changes, land use, vegetation state, water cycle and surface-energy variables for a broad range of users across the world.

Credits: ESA - Satellites key to addressing water scarcity

SUSTAINABLE & RESILIENT INFRASTRUCTURE - Example of Usage

Category: Environmental monitoring

Example of usage: Urban heat islands

List of applications: EO can support mapping temperatures and temperature variations across urban areas, e.g., as a means to alert health authorities of related risks for specific demographic groups.

Credits: <u>The 2022 Market report is now available for</u> <u>download! | EU Agency for the Space Programme</u> (europa.eu)

Parks cool areas of Madrid Credits: ESA - Satellites predict city hot spots

SOTA analysis

Preliminary results

2nd Pain Point workshops

12th and 13th September 2023

SOTA Methodology

• Three activities:

- a) The analysis of the Intellectual Property Rights Listing the existing patents, standards
- b) COTS mapping
- c) Analysis of the material collected, transforming this into a list of technologies and assessment of the TRL level of these technologies

The main aim is to identify the room for innovation to set the grounds for a future PCP.

SOTA Methodology

• Three activities:

- a) The analysis of the Intellectual Property Rights Listing the existing patents, standards
- b) COTS mapping
- c) Analysis of the material collected, transforming this into a list of technologies and assessment of the TRL level of these technologies

The main aim is to identify the room for innovation to set the grounds for a future PCP.

Task 3.2 Methodology (2)

Activity (a) – IPR Analysis

- Macro analysis of the total stock of relevant patents, standards, standard essential patents, to
 obtain information on their type, scope, breadth, content, radicalness and technical relevance, as well
 as the associated institutions and related suppliers owning intellectual property rights (IPRs).
- The room for innovation/and or standardisation, the initial maturity level, the result that can be achieved in a given solution space, the associated expected timeline and investment will be determined.
- After reviewing this analysis, an in-depth technical analysis of the most relevant documents will be performed by technical experts from GEKO, AV, CKIC. This will result in the **top 10 patents per application domain**.
- This activity provides input to:
 - (1) the questions for the OMC
 - (2) the drafting of the tender documentation (technical specifications and award criteria). One defining feature of the IPR search is the provision of information which is independent of industry bias (e.g. identified through research and not self-reported), which reduces the knowledge asymmetry between contracting authorities and the market.

SOTA Methodology (3)

Activity (b) – COTS Mapping

- Identification and evaluation of the available Commercial-Off-The-Shelf (COTS) products which can satisfy the identified gaps.
- The aim is to identify at least 5 COTS per application domain & certification methods.

Activity (c) – TRL Level Assessment

- After obtaining the outcomes of the previous tasks, the participants will work on identifying the TRL level of the technologies connected with selected COTS and macro analysis results. Input to this task will be provided by the relevant research conducted under WP1.
- GECO shall gather material and select the 5 most relevant technologies per use case that have been selected as critical for the needs of the Partners and are eligible for an upcoming PCP.
- Explore the possibility of transversal technologies to be used to more than one application domains.

Technology Readiness Level (TRL)

TRL for software used for mapping CS

TRL	Definition
1	Preliminary algorithmic stage. Publication of research results.
2	Individual algorithms or functions are prototyped.
3	Prototype of the main functionalities of the integrated system.
4	Alpha version. Preliminary release of non-mature software version; distributed to a community at an early stage of the software development life-cycle; that implements the main functionality of the software and by which preliminary verification and validation activities are archived.
5	Beta version. Preliminary release of non-mature software version; distributed to a community at an early stage of the software life-cycle, that implements the complete functionality of the software and by which preliminary verification and validation activities are archived.
6	Ready for use in an operational or production context, including user support, as a building block or a tool.
7	Demonstrator. Building block and tailored generic software product qualified for a particular purpose.
8	System qualified and ready to be applied in an operational environment.
9	Has been applied in the execution of an operational environment

Challenge 1 FLOODS

- The analysis revealed research on the
 - Methods for identifying the probability of occurrence of a flood event (risk indicators)
 - Flood measuring and trigger system (usually by making grids of the regios)
 - After event evaluation of the affected area
 - Flood map production
 - Systems and methods are provided for processing observation data.
- Technologies & tools: satellite imagery, computer vision, artificial intelligence, multi sensor input (drones etc), image analysis, statistical analysis, and mathematical analysis, kernel algorithm, visible-infrared band images of a region, water based network devices.

Patents and Standards preliminary search results

Challenge 1 FLOODS

List of keywords used

- flood
- earth observation
- rapid prediction
- coastal
- river
- detect

- risk
- sea level rise
- Satellites
- internet of things
- drones

 (all:(flood)) AND (description_search:(earth observation)) AND (description_search:(rapid prediction)) AND (all:(drones))

Results: Analytics Search Data			< Over Time 🔹 Export
156 147 35 Documents Patents Families			
Market Overview Over Time Industry Trend Authority Indicators Rank Industry Cl	usters IPC/CPC Portfolio Concentration Citation Co-Assi	gnee Litigation Transferred	y-Axis: Patents • (i) Bubble Size: Market Coverage (MC) • (i)
Current Assignee Aggregated by Lowest Subsidiary Table Chart	IIII Table Chart - 🗘 Indicators - 🛓 Export	Filters	
Cur. Assignee ⇔ Patents → Fam. ⇔ Share ⇔ MC ⇔ TR ⇔ Legal Team Size Cool Breadth (TE) on	perati Market Radicalne Technica Scope Share Patents (CO) (VIC) SS (RA) Polymera (SC) Share Patents	■ ACTIVE Yes \$ 130	30
Strong Force Vcn 52 1 35.4% 1793 6 Strong Force Vcn Portfolio 2019 1.37 1.45 0	92 17.93 0.35 0 0.99 35.4% 52	☐ GRANTED Yes \$ 13	20
Strong Force lot 34 2 23.1% 17.89 17.8 Strong Force lot Portfolio 2016 1.19 1.61 0	91 17.89 0.56 17.8 2.93 23.1% 34	☐ TRANSFERRED Yes \$ 6	
Ai Lien.fanwensibaige 5 1 3.4% 2.34 0.35 : Ai Lien.fanwensibaige 1 5.4 0.34 0	84 2.36 1.76 0.73 2.59 3.6% 5	LITIGATED Yes 🗢 0	10
Dtn 5 1 34% 495 3.61		> PATENT OFFICE	
Kays steven 5 1 3.4% 0.42 2.88 Dtn 1.32 0.72 1.	02 3.97 0.46 1.39 1.04 3.4% 5	> DATES	0 2007 2009 2011 2013 2015 2017 2019 2021 2023
License 5 1 3476 0.42 2.06 Kays Steven 1.54 0.38 0	.81 0.42 0 2.88 0.74 3.4% 5	> INDUSTRY SECTOR	
Lone Gull Holdings 4 1 2.7% 9.12 0 World Charity Division License 1.54 0.38 0	.81 0.42 0 2.88 0.74 3.4% 5		● 20.02 • 0.4 x-Axis: Publication Year ①
Everypoint, Inc. 3 1 2% 0.94 0 1 Lone Gull Holdings 1.1 1.42 0	88 912 0.39 0 1.12 2.7% 4		Strong Force Vcn Portfolio 2019 Strong Force lot Portfolio 2016 Al Lien fanwensibaige Altr Altr
Weedout Ltd. 3 1 2% 1.69 2.02 10691976 Canada Ltd. 1.39 0.61 0.	94 8.06 0.47 0 2.36 2% 3	> KIND TYPE	
Advanced Biological 2 1 1.4% 1.32 0			✓ 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
IPlytics Platform - Version 4.4.0		Cookies © IPlytics GmbH. All Rights Reserved.	

(all:(coastal)) AND (all:(river)) AND (all:(flood)) AND (description_search:(earth observation)) AND (description_search:(detect)) AND (description_search:(risk)) AND (all:(Satellites))

Results: Analytics Search Data												Publication No. 🗢 Cur. Assignee	🗢 Applicant 🖨	Inventor(s) 🜩	Title (English) ≑	Abstract (English) 🖨	Indus. Sect. 🖨	Active 🗢	TR ✿ MC ✿
54 47 40												US20210149929A1 University of	Connecticut University of Connect	ticut SHEN XINYI ANAGNOST	O SYSTEMS AND METHODS T.	A system and method to	Electrical engineering	Yes	0 0.24
Documents Patents Families												US20230068107A1 Swiss Reinsu	ance Compan' Swiss Reinsurance Co	ompan' DE JONG ROGIER SCHEI	.S Monitoring and risk index.	A measuring and monitor	r Electrical engineering	Yes	- 1.08
Market Overview Over Time Industry Trend Author	nority Indicators Rar	k Indu	stry Clusters	i IPC/	CPC Portfol	io Concentr		Citation	Co-As	ssignee Litigation	Transferred	WO2022063839A1 Swiss Reinsu	ance Compan [,] Swiss Reinsurance Co	ompan SCHELSKE OLIVER DE JI	D MONITORING AND RISK IN.	A measuring and monitor	r Electrical engineering	Yes	- 0.8
												EP4217955A1 Swiss Reinsu	ance Compan' Swiss Reinsurance Co	ompan: SCHELSKE OLIVER DE JI	D MONITORING AND RISK IN.	A measuring and monitor	r Electrical engineering	Yes	- 1.16
Current Assignee	Karket Overview				Table Char	t 🕶 🛛 🗘	Indicator	rs 👻 💆	Export	Filters ^{0 applied}		CN114091756B National Mar	ne Environme National Marine Erwi	ronme Not Available	Township tsunami risk as	. The invention relates to a	a Electrical engineering	Yes	- 0.39
	Legal			Market		Technica						W02023052570A1 Swiss Reinsu	ance Compan' Swiss Reinsurance Co	ompan' SCHENKEL DAVID SRIN	N AERIAL AND/OR SATELLIT	. An aerial and/or satellite	e Electrical engineering	Yes	- 0.65
Cur. Assignee \$ Patents ♥ Fam. \$ Snare \$ MC \$ TR \$	Breadth	Team Size (TE)	Cooperati on (CO)	Coverag	Radicalne ss (RA)	l	Scope (SC)	Share	Patents		Yes 🗢	20 W0202207464341 Edgy Bees Ltr	. Edgy Bees Ltd.	HASKIN MENASHE MAK	M IMPROVING GEO-REGISTR	A Geo-synchronization sy	y Electrical engineering	Yes	- 0.59
Swiss Reinsurance 4 2 8.5% 0.92 0	(LB)			e (MC)		Relevanc				GRANTED	Yes 🗢	8 KR101799861B1		Not Available	Flood damage adjustmen.	More particularly, the pre	e Chemistry	No	2.02 0.07
Everbridge Inc 2 1 4.3% 5.29 9.86	Company Ltd.	1.05	0.91	0.92	0.53	0	0.95	8.5%	4		Yes 📤	KR20170081589A		LEE WOO SUNG	Typhoon Disaster Dischar.	The present invention rel	L Other fields	No	1.11 0.05
Abelow Daniel H. 1 1 2.1% 2.55 0												KR20200099259A		LEE WOO SUNG	Tsunami disaster prevent.	The present invention rel	L Other fields	No	0 0.08
Edgy Bees Ltd. 1 1 2.1% 0.59	Everbridge Inc 0.79	0.64	1.81	6.08	0.12	1.92	1.3	4.3%	2		Yes 🗢	O KR101570665B1		Not Available	Flood disaster control sy	. The present invention rel	L Other fields	Yes	4.38 0.1
National Marine					2					> PATENT OFFICE		US10856127B2 Everbridge In	c RedSky Technologies	, Inc. MAIER NICHOLAS M EIS	N Method and system for a	. An emergency location ir	n Electrical engineering	Yes	1.92 5.74
Environmental 1 1 2.1% 0.39 0	Abelow Daniel H. 0.94	0.32	0.93	2.55	0	0	1.35	2.1%	1	> DATES		KR20140094481A		LEE WOO SUNG	Peace retained reclamati	. More particularly, the pre	e Other fields	No	0 0.1
University of 1 1 2.1% 0.24 0												KR20140094482A		LEE WOO SUNG	Global nuclear power rea.	BACKGROUND OF THE INV	V Mechanical engineering	Yes	2.73 0.02
Connecticut	Edgy Bees Ltd. 3.36	2.12	0.86	0.59	0.14	0	0.5	2.1%	1	> INDUSTRY SECTOR		KR20180019134A		LEE WOO SUNG	Dual-structure fast react	. The present invention rel	L Mechanical engineering	No	6.89 0.02
	National Marine	0.26	0.97	0.39	22	0	0.96	2.1%	1	> INDUSTRY FIELD		JP2906165B2		Not Available	Protective equipment	Not Available	Mechanical engineering	No	1.45 0.1
	Forecasting Center	0.20	0.07	0.59	2.2	Ŭ	0.90	2.170				KR20160093580A		LEE WOO SUNG	Public water landfill of fis.	The present invention rel	L Other fields	No	0 0.05
	University of Connecticut	0.04	0.02	0.24	0	0	1.02	2.10/	1	> KIND ITPE		KR20160101884A		LEE WOO SUNG	Marine products cultivati	The present invention rel	L Mechanical engineering	No	0 0.03
	- onversity of connecticut - 1,34	0.94	0.93	0.24	U	0	1.02	2.1%				JP2017122713A		TAKAHASHI MASATO	DIRECTION INFORMATION .	PROBLEM TO BE SOLVED:	Instruments	Yes	4.96 0.15
IPlytics Platform - Version 4.4.0										Cookies © IPlytics	GmbH. All Rights Reserve	KR20170012880A		LEE WOO SUNG	Gas cooling reactor facilit.	The present invention rel	L Mechanical engineering	No	0 0.03

(all:(coastal)) AND (all:(river)) AND (all:(flood)) AND (description_search:(earth observation)) AND (description_search:(detect)) AND (description_search:(risk)) AND (all:(Satellites))

ABSTRACT

A measuring and monitoring system is proposed comprising a plurality of measuring sensors and measuring devices by means of which geographically cellularly delimited measuring parameters are acquired. The measuring parameters are aggregated to a BES index, wherein the measuring parameters are selected in relation to the desired measurement accuracy of the biodiversity and ecosystem services (BES) index. The measuring and monitoring system comprises selectable, various biodiversity and ecosystem services at least comprising measuring parameters for measuring the habitat intactness and/or pollination and/or air quality and local climate and/or water security and/or water quality and/or soil fertility and/or erosion control and/or coastal protection and/or food provision and/or timber provision. The measuring and monitoring system further permits the quantitative acquisition/measurement of risk indices based on the measured ecosystem services as a function of sectoral economic services. A measuring and monitoring system is proposed comprising a plurality of measuring sensors and measuring devices by means of which geographically cellularly delimited measuring parameters are acquired. The measuring parameters are aggregated to a BES index, wherein the measuring parameters are selected in relation to the desired measurement accuracy of the biodiversity and ecosystem services (BES) index. The measuring and monitoring system comprises selectable, various biodiversity and ecosystem services at least comprising measuring parameters for measuring the habitat intactness and/or pollination and/or air quality and local climate and/or water security and/or water quality and/or soil fertility and/or erosion control and/or coastal protection and/or food provision and/or timber provision. The measuring and monitoring system further permits the quantitative acquisition/measurement of risk indices based on the measured ecosystem services as a function of sectoral economic services.

 (all:(coastal)) AND (all:(flood)) AND (description_search:(earth observation)) AND (description_search:(sea level rise)) AND (all:(internet of things))

68 61 51 Documents Patents Families	
Market Overview Over Time Industry Trend Authority Indicators Rank Industry Clusters IPC/CPC Portfolio Concentration Citation	n Co-Assignee Litigation Transferred
Current Assignee	▲ Export Filters 0 applied >
Cur. Assignee \$ Patents * Fam. \$ Share \$ MC \$ TR \$ Legal Team Size Cooperati Market Radicalne Technica Scope Breadth (TE) on (CO) Coverag St (RA) Polyager (SC)	Patents ACTIVE Yes \Rightarrow 27
Schmidt Boecking 5 2 8.2% 2.26 15.54 1 CL0 E (mic) Retevant Horst 5 2 8.2% 2.26 15.54 1 1.14 1.75 2.26 0.71 15.54 0.44 8.2%	GRANTED Yes \$ 7
University of Florida 3 1 4.9% 1.99 0 1	☐ TRANSFERRED Yes � 0
Abelow Daniel H. 1 1.6% 2.55 0 : University of Florida 1.29 2.39 2.7 2.05 0.26 0 2.25 4.9%	
Astrovinson 1 1 1.6% 4.67 10.97 : Abelow Daniel H. 0.94 0.32 0.93 2.55 0 0 1.35 1.6%	
Clarkson University 1 1 1.6% 0.82 0 : Astrovinson International 2.49 1.23 1 4.67 0 10.97 1.16 1.6%	> PATENT OFFICE
Climate Central 1 1 1.6% 0.25 1.24 : Clarkeon Inversity 126 2.02 2.73 0.82 0.0 0.0 1.63 1.6%	> DATES
Edgy Bees Ltd. 1 1 1.6% 0.59 0 :	> INDUSTRY SECTOR
Grid Invent Ggmbh 1 1 1.6% 0.67 17.34 : Climate Central 1.53 0.58 0.92 0.25 0 1.24 0.51 1.6%	
Horowitz Kenneth A. 1 1 1.6% 312 0.28 : Edgy Bees Ltd. 3.36 2.12 0.86 0.59 0.14 0 0.5 1.6%	
Mahgoub 1 1 1.6% 0.24 1.81 :	> KIND TYPE
Strong Value Chain 0 0.34 0.87 0.51 17.34 2.82 1.6% Network Investment 1 1 1.6% 18.19 0 1 <th></th>	

Example of Standards search

(all:(flood)) AND (description_search:(earth observation)) AND (description_search:(detect))

Challenge 2 Fire

- The analysis revealed research on the
 - Methods for identifying fire risk level
 - Early warning- prediction
 - Fire management system (status, monitoring & forecast –estimated progression)
 - Maps & graphical representation of fire information
 - None of the results was related to waste fire specifically but the inventions identified can provide a technological basis for the challenge
- Technologies & tools: satellite imagery, multi sensor input (drones etc), satellite images, vegetation information, and weather data, statistical analysis, and mathematical analysis, cloud-to-ground lightning distribution characteristics, water based network devices.

Patents and Standards preliminary search results

Challenge 2 Fire

List of keywords used

- fire ignition
- monitoring of fire
- prediction
- forest fires
- Wildfires
- satellites
- Earth Observation

- waste fire
- fire prevention
- fire risk
- fire prediction
- Automated notification
- Artificial Intelligence
- drones

 (all:(fire ignition)) AND (description_search:(monitoring of fire)) AND (description_search:(prediction)) AND (description_search:(forest fires)) AND (description_search:(wildfires)) AND (all:(satellites))

Results: Analy	tics	Search	Data																Publication No. \$	Cur. Assignee 🛊	Applicant \$	Inventor(s) &	Title (English) \$	Abstract (English) 🛊	Indus. Sect. 🛊	Active‡ TR‡	NC + Filters
32 27 DocumentNumbertof u	1 Inique	7 patent c	ocumen	ts															US1166048082 US1116967882	One Concern, Inc. One Conern	One Concern, Inc. One Conern	TOHIDI ALI MCCARTH	Y N Fire forecasting Y N Fire management tool wi	Methods, systems, an	d co Instruments d co Electrical engineering	Yes - Yes O	4.07
Market Overview	Ove	r Time		dustr	v Trend	Author	rity Indicators	Rank	Indus	try Cluster		CPC Portfo	lio Concent	ration	Citation	Co-4	ssignee Litigation	Transferred	US1120292682	One Concern, Inc.	One Concern, Inc.	TOHIDI ALI MCCARTH	Y N Fire monitoring	Tools for fire monitori	ing Chemistry	Yes -	6.69 TRANSFERRED
																			US2022001645541			TOHIDI ALI MCCARTH	Y N., FIRE MONITORING	Tools for fire monitori	ing Electrical engineering	Yes -	243 🗌 LITIGATED
Current Assign Aggregated by Lowest Su	ee ubsidiary				₹₫		K Market Over	view				Table Cha	rt 🕶 🛛 🕻	a Indicator	rs 👻 💆	Export	Filters ^{0 applied}		W0202010672041			TOHIDI ALI MCCARTH	Y N., FIRE MONITORING	Tools for fire monitori	ing Instruments	No 12.5	3.17 > PATENT OFFICE
Cur. Assignee 🗢	Patent	s 👻 Fam	\$ Share	e¢	MC¢ TR¢			Legal Breadth	Team Size (TE)	Cooperati on (CO)	Market Coverag	Radicalne ss (RA)	Technica l	Scope (SC)	Share	Patents	ACTIVE	Yes 🗢 18	W02023281386642 US2023001142441	Helios Pompano Helios Pompano	Helios Pompano Helios Pompano	KERESZY TAMAS KER Kereszy tamas ker	ESZ., SYSTEM AND METHOD FO	 A system and method A system and method 	for Instruments	Yes -	199 199 > DATES
Kays Steven			14.8%	6	0.45 0.34		Kaura Stouron	(LB)	0.51	0.0/	e (MC)	0	Relevanc	0.07	14.004		GRANTED	Yes 🗢 7	U\$9977963B1	Northrop Grumman Sys	terr Northrop Grumman Sy	stem FENDELL FRANCIS E	UAVs for tracking the gro	. A system and method	for Instruments	Yes 1.2	0.29 > INDUSTRY SECTO
World Charity Division License			14.8%	6	0.45 0.34		Kays Sleven	2.82	0.51	0.94	0.45	0	0.34	0.97	14.8%	4	TRANSFERRED	Yes 🚔 0	CN1151467058	Narijing Forestry Univer	sity Nanjing Forestry Unive	rsity Not Available	Nethod for identifying fo	The invention disclos	es a Electrical engineering	Yes -	0.43 NDUSTRY FIELD
Helios Pompano			7.4%		1.99 0):	World Charity Division License	2.82	0.51	0.94	0.45	0	0.34	0.97	14.8%	4			P597264282	The Boeing Company	The Boeing	C c Not Available	Fire management system	Not Available	Instruments	Yes 0	0.79
Knoetik Solutions			7.4%		0.71 0	:	Helios Pompano	1.35	0.73	0.89	1.99	0	0	1.02	7.4%	2		Yes 🗢 0	US1129513181	Knoetik Solutions	Knoetik Solutions	DHAJILAN KIAN DHAV	IAN Smoke and fire recogniti	L. A method and system	to r Electrical engineering	Yes -	0.79 XIND TYPE
One Concern, Inc.			7.4%		5.09 6.95	:					0.74	0.05			7.00		> PATENT OFFICE		U52022039884041	Knoetik Solutions	Knoetik Solutions	DHAMAN KIAN DHAN	IAN SMOKE AND FIRE RECOGI	A method and system	to r., Instruments	Yes -	0.62
Erickson Incorporated			3.7%		1.27 0	:	Knoetik Solutions	0.86	0.64	0.91	0.71	0.35	0	2.27	7.4%	2	> DATES		W0202308123441	Has Llc.	Has Llc.	STATTER HARRY SIM	NO NETWORKS, SYSTEMS AN	L. There is provided net	wor Chemistry	Yes -	12
Has Llc.			3.7%		1.2 0	:	One Concern, Inc.	0.85	1.99	3.25	5.38	0.18	0	1.49	7.4%	2			W0202221206541	Erickson Incorporated	Erickson Incorporated	BAXTER JEFFREY SAS	SER AERIAL WATER CANNON	Disclosed embodimen	nts Chemistry	Yes -	127
Nanjing Forestry			3.7%		0.43 0	1:	Erickson Incorporated	0	1.05	0.91	1.27	0.71	0	0.92	3.7%	1	> INDUSTRY SECTOR	{ 	KR20150138131A			LEE WOO SUNG	The dual structure of the	The present invention	n rel Mechanical engineering	No O	0.02
Northron Grumman							1420.72										> INDUSTRY FIELD		KR20150138130A			LEE WOO SUNG	The dual structure of a n	The present invention	n rel Mechanical engineering	No 253	0.02
Systems Corporation			3.7%		0.29 1.28		Has Llc.	0.77	0.79	0.87	1.2	0.52	0	1.41	3.7%	1	> KIND TYPE		KR20150138128A			LEE WOO SUNG	The dual structure of a n	. The present invention	n rel Mechanical engineering	No 22	0.03
One Conern			3.7%		2.6 1.93	:	Nanjing Forestry University	0.84	0.63	0.97	0.43	1.53	0	0.67	3.7%	1			KR20150138127A			LEE WOO SUNG	Nuclear waste disposal i	L. Nuclear waste treatm	ent Mechanical engineering	No O	0.03
The Boeing Company			3.7%		0.74 2]:	Northron Grumman												KR20150138129A			LEE WOO SUNG	Nuclear Waste Nuclear P	. [0001] The present in	vent. Mechanical engineering	No O	0.03
IPlytics Platform - Versio																	Cookies © IPt	ytics GmbH. All Rights Reserved.	KR20150138126A			LEE WOO SUNG	Nuclear Waste double bl	. The present invention	n rel Mechanical engineering	No O	0.03

 (all:(fire ignition)) AND (description_search:(monitoring of fire)) AND (description_search:(prediction)) AND (description_search:(forest fires)) AND (description_search:(wildfires)) AND (all:(satellites))

TITLE (ENGLISH)

Fire management tool with versatile user interface

ABSTRACT

Methods, systems, and computer programs are presented for providing a user interface for fire management. One method includes an operation for estimating, by a fire management system, a fire state in a region and a forecast of an evolution of a fire at multiple times. The fire management program provides a user interface presenting fire information based on the estimated fire state and the forecast. The user interface includes a map of the region, a graphical representation of the fire information, and a time bar for selecting a time for the fire information. Additionally, the method includes an operation for receiving, via the user interface, a selection of the time for the fire information. The selected time is one of a past time, a present time, or a future time. The fire management program presents in the user interface the fire information for the selected time. Methods, systems, and computer programs are presented for providing a user interface for fire management. One method includes an operation for estimating, by a fire management system, a fire state in a region and a forecast of an evolution of a fire at multiple times. The fire management program provides a user interface presenting fire information based on the estimated fire state and the forecast. The user interface includes a map of the region, a graphical representation of the fire information, and a time bar for selecting a time for the fire information. Additionally, the method includes an operation for receiving, via the user interface, a selection of the time for the fire information. The selected time is one of a past time, a present time, or a future time. The fire management program presents in the user interface the fire information for the selected time.

 (all:(Earth Observation)) AND (description_search:(waste fire)) AND (description_search:(fire ignition)) AND (description_search:(fire prevention)) AND (description_search:(fire risk)) AND (description_search:(fire prediction)) AND (description_search:(Automated notification)) AND (all:(Artificial Intelligence))

Results: Analytics Search Data															Industry Trand
241 173 13 Documents Patents Families															Patents trending by Publication Year
Market Overview Over Time Ir	ndustry Trend Aut	thority Indicators	Rank		stry Clusters	IPC,	CPC Portfol	lio Concenti		Citation	Co-As	signee Litigation 1	ransferred		y-Axis: Patents
Current Assignee Aggregated by Lowest Subsidiary	=	< Market Ove Table Chart	rview				Table Char	t -	3 Indicator	s 🕶 📃 🛓		Filters O applied			60
Cur. Assignee \$ Patents ▼ Fam. \$ Shar			Legal Breadth	Team Size (TE)	Cooperati on (CO)	Market Coverag	Radicalne ss (RA)	Technica l	Scope (SC)	Share	Patents		Yes 🗢	130	
Strong Force lot 137 1 79.29 Portfolio 2016	% 19.96 5.89	Strong Force lot Portfolio	(LB)	1.25	0.01	e (MC)	0.61	Relevanc	5.02	70.2%	107	GRANTED	Yes 🗢	69	
Strongforce lot 22 1 12.79 Portfolio 2016	% 19.85 4.69	2016	1.07	1.25	0.91	19.97	0.61	7.24	5.93	19.27	137	TRANSFERRED	Yes 🗢	2	20
Kays Steven 8 1 4.6%	6 <u>0.43</u> <u>1.97</u>	Strongforce lot Portfolio 2016	1.11	1.38	0.85	19.88	1.21	7.2	0.97	12.7%	22		Yes 🖨	o	
World Charity Division 8 1 4.6% License	6 0.43 1.97	Kays Steven	2.35	0.45	0.85	0.43	0	1.97	0.88	4.6%	8	> PATENT OFFICE			0 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Strong Force Lot 3 1 1.7% Portfolio 2016	6 19.99 6.58	World Charity Division						·				> DATES			x-Axis: Publication Year 👻
American Vehicular Sciences Llc 2 1 1.2%	6 17.8 12.64	License	2.35	0.45	0.85	0.43	0	1.97	0.88	4.6%	8	> INDUSTRY SECTOR			
Powerful Internet Of Things Portfolio 2016 2 1 1.2%	6 19.89 19.97	Strong Force Lot Portfolio 2016	0.98	1.28	1.83	19.99	0.02	6.58	7.75	1.7%	3	> INDUSTRY FIELD			1. Computer technology: 65 2. Digital communication: 57 3. Control: 48 4. Telecommunications: 23
Limited Automotive		American Vehicular Sciences Llc	1.08	1.34	0.73	20.02	1.28	14.6	4.04	1.2%	2	> KIND TYPE			5. IT methods for management: 10 6. Other Industry Sectors: 6
Technologies 1 1 0.6% International Inc	6 20.02 19.23	Powerful Internet Of	0.05	1(2	0.02	10.00	0.01	10.07	2.00	1.20/					2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
IPlytics Platform - Version 4.4.0												Cookies © IPlytics G	mbH. All Rights Re	eserved.	

 (all:(Earth Observation)) AND (description_search:(wild fire)) AND (description_search:(fire detection)) AND (all:(drones))

Results: Analyt	lics	Search [
66 60 Documents Patents	28 Fan	} nilies															
Market Overview	Over		Indi	ustry Trend Au	thority Indicators	Rank		stry Clusters		/CPC Portfo					signee Litigation [.]	Transferred	
Current Assigne Aggregated by Lowest Su	ee Ibsidiary			₹₹	< Market Ove Table Chart	rview				Table Cha	rt -	Indicator	's ↓	Export	Filters ^{0 applied}		
Cur. Assignee \$	Patents		\$ Share \$	\$ MC \$ TR \$		Legal Breadth (LB)	Team Size (TE)	Cooperati on (CO)	Market Coverag e (MC)	Radicalne ss (RA)	Technica l Relevanc	Scope (SC)	Share	Patents		Yes 🗢	
Gesellschaft zur Förderung der ange-			10%	1.27	Fraunhofer-Gesellschaft zur Förderung der ange-	1.43	1.03	0.88	1.27	0.54	0	0.8	10%	6	GRANTED	Yes 🗢	
Kays Steven			8.3%	0.42 2.88	wandten Forschung e.v.										TRANSFERRED	Yes 🗢	
World Charity Division License			8.3%	0.42 2.88	Kays Steven	1.54	0.38	0.81	0.42	0	2.88	0.74	8.3%	5		Yes 🗢	
Green Grid Inc.				2.01 19.98	World Charity Division License	1.54	0.38	0.81	0.42	0	2.88	0.74	8.3%	5	> PATENT OFFICE		
May Patents Ltd.			5%	3.76 20		-									> DATES		
Plasma Games			5%	3.48 5.52	Green Grid Inc.	1.28	1.09	0.91	2.01	0.15	19.98	2.38	5%	3	> INDUSTRY SECTOR		
Bayer AG			3.3%	0.61	May Patents I td	3.23	0.36	0.89	3.98	01	20	156	5%	3			
Digital Doors			3.3%	1.75 19.83	may ratents Eu.	5.25	0.50	0.09	5.90	0.1	20	1.50	570		> INDUSTRY FIELD		
Knoetik Solutions			3.3%	0.71 0	Plasma Games	1.77	2.33	1.12	3.42	0.39	0	0.76	5%	3	> KIND TYPE		
Resocator			3.3%	11.4 0													
Abelow Daniel H.				2.55			2.20	0.05	0.64			0.05	2.00				
IPlytics Platform - Versio															Cookies © IPlytics C	imbH. All Rights R	

Example of standard search

• (all:(Earth Observation)) AND (description_search:(fire prediction)) AND (all:(satellites))

Challenge 3 Water

- The analysis revealed research on the
 - Methods for identifying the probability of occurrence of a drought
 - Systems and methods are provided for processing observation data
 - Methods for identifying risk level
 - Early warning- prediction
 - Water and drought management system (status, monitoring & forecast –estimated progression)
 - Maps & graphical representation of water information
- Technologies & tools: satellite imagery, multi sensor input (drones etc), computer vision, satellite images, vegetation information, and weather data, statistical analysis and mathematical analysis, water based network devices, ground measuring data, GUI, use of database management systems future data.

Patents and Standards preliminary search results

Challenge 3 Water

List of keywords used

- drinking water
- Earth observation
- drinking water management
- water quality
- Drought
- satellites
- fresh water
- water detection
- Al
- water demand

 (all:(drinking water)) AND (all:(Earth observation)) AND (description_search:(drinking water management)) AND (description_search:(water quality)) AND (description_search:(drought)) AND (all:(satellites))

Results: Analytics Search Data												Publication No. ♦ Cur. Assignee ♦	Applicant 🜩	Inventor(s) \$	Title (English) ‡	Abstract (English) 🖨	lindus. Sect. 🛊	Active 🛊	TR‡ MC‡	Filters	2
74 (5 (0												CN111241473A China Academy of Sp	bace Tel China Academy of Spa	ce Te ZHENG WEI YIN WENJI	IE Method for improving r	eg The invention discloses	a Electrical engineering	Yes	0 0.12	GRANTED	Yes \$
71 05 48 Documents Patents Families												US20230068107A1 Swiss Reinsurance Co	omparr Swiss Reinsurance Cor	npan DE JONG ROGIER SCH	ELS Monitoring and risk ind	lex A measuring and monito	or Electrical engineering	Yes	- 1.08		
	nistri sistimati e							ctant	6 • • •	atanata (tatanata)		WC2001079893A1 Planalytics, Inc.	Planalytics, Inc.	BECK STEVEN CAMPBE	ELL WATER MANAGEMENT S	YS A system, method, and c	co Electrical engineering	No	0.15 0.2	TRANSFERRED	Yes 🌩
Market Overview Over Time Industry Irend Auto	nority indicators F		istry clusters	s ipc,	/CPC Portfol	lio Concenti		Citation	CO-AS	signee Litigation		WO2022063839A1 Swiss Reinsurance Co	omparr Swiss Reinsurance Cor	npan SCHELSKE OLIVER DE	JO MONITORING AND RISK	IN A measuring and monito	or Electrical engineering	Yes	- 0.8		Yes 🖨
Current Assignee	Market Overview	N			Table Char	rt 	• Indicator	rs 🚽 🔳		Filters		EP4217955A1 Swiss Reinsurance Co	omparr Swiss Reinsurance Cor	npan SCHELSKE OLIVER DE	JO MONITORING AND RISK	IN A measuring and monito	or Electrical engineering	Yes	- 116	> PATENT OFFICE	
Aggregated by Lowest Subsidiary												US703192781 Planalytics, Inc.	Strategic Weather Serv	vices BECK STEVEN CAMPBE	ELL System, method, and ci	o A system, method, and c	co Electrical engineering	No	1.07 0.22	,	
Cur. Assignee ⇔ Patents ▼ Fam. ⇔ Share ⇔ MC ⇔ TR ⇔	Leg Brea	al Team Size	Cooperati	Market Coverag	Radicalne	Technica l	Scope	Share	Patents		Yes 🗢 26	JP2906165B2		Not Available	Protective equipment	Not Available	Mechanical engineering	No	1.45 0.1	> DATES	
Swiss Reinsurance 3 1 4.6% 1.01 0	(LE	3)	011 (CO)	e (MC)	55 (RA)	Relevanc	(50)				Voc 🔺 8	KR101799861B1		Not Available	Flood damage adjustm	en More particularly, the pr	e Chemistry	No	2.02 0.07	> INDUSTRY SECTOR	
	Swiss Reinsurance Company Ltd.	0.98	0.92	1.01	0.77	0	0.43	4.6%	3		103 🗸 0	KR20120066690A		LEE WOO SUNG	OCEAN TUNNEL TRAFFIC	E The present invention re	el Other fields	No	7.14 0.05	NUNISTRY FIELD	
	Planalytics Inc	27 2 59	0.53	0.21	0.27	0.61	12	3.1%	2	TRANSFERRED	Yes 🗢 1	KR20200099259A		LEE WOO SUNG	Tsunami disaster preve	nt The present invention re	el Other fields	No	0 0.08	/ INDUSTRITTIELD	
Tran Bao 2 1 3.1% 3.95 0		52 2.55	0.55	0.21	0.27	0.01	1.2	5.170	-	LITIGATED	Yes 🗢 🛛 0	KR10157066581		Not Available	Flood disaster control :	sy The present invention re	el Other fields	Yes	4.38 0.1	> KIND TYPE	
Abelow Daniel H. 1 1 1.5% 2.55 0	Tran Bao 2.4	6 0.32	0.93	4.38	0	0	5.5	3.1%	2			KR20170081589A		LEE WOO SUNG	Typhoon Disaster Disch	ar The present invention re	el Other fields	No	111 0.05		
China Academy of 1 1 1.5% 0.12 0	Abelow Daniel H.	0.32	0.93	2.55	0	0	1.35	1.5%	1	> PATENT OFFICE		KR20070106596A		LEE WOO SUNG	THERE IS EXTERMINATE	E A maritime disaster and	Mechanical engineering	Yes	6.12 0.02		
Precisionlife Ltd 1 1 1.5% 0.74 7.49										> DATES		KR202001002684		LEE WOO SUNG	Dispatching device for	la The present invention re	el Other fields	No	0 0.04		
Takenaka Komuten Co 1 1 1.5% 0.57 2.45	China Academy of Space Technology	31 1.49	0.93	0.12	0.89	0	0.42	1.5%	1	> INDUSTRY SECTOR	२	KR20140005836A		LEE WOO SUNG	PEACE RETAINED RECLA	M More particularly, the pr	e Other fields	Yes	0.64 0.1		
Tran Ha 1 1 1.5% 3.51 0	Precisionlife Ltd	0.6	0.89	0.74	2.61	7.49	1.19	1.5%	1			KR20230028341A		CHUNG HA IK	Al, IoT, ICT, App, equipm	e The present invention is	Electrical engineering	Yes	- 0.25		
										> INDUSTRY FIELD		KR20100027087A		LEE WOO SUNG	FOR THE OCEAN A GENE	R The present invention p	r Mechanical engineering	No	6.65 0.02		
	Takenaka Komuten Co 0.	4.69	1.84	0.57	0	2.45	0.3	1.5%	1	> KIND TYPE		KR20230024457A		CHUNG HA IK	Equipment, material, of	bj The present invention is	Chemistry	Yes	- 0.55		
	Tran Ha		-	-	-	-	-	1.5%	1			KR20140094482A		LEE WOO SUNG	Global nuclear power n	ea BACKGROUND OF THE IN	V Mechanical engineering	Yes	2.73 0.02		
												KR202300010644		CHUNG HA IK I CHUNG	YO., Drone, air craft, mobilit	v The present invention a) Chemistry	No	- 0.33		
IPlytics Platform - Version 4.4.0										Cookies © IPI	vtics GmbH. All Rights Reserved.										

 (all:(drinking water)) AND (all:(Earth observation)) AND (description_search:(drinking water management)) AND (description_search:(water quality)) AND (description_search:(drought)) AND (all:(satellites))

ABSTRACT (ENGLISH)

The invention discloses a method for improving regional underground water reserve estimation precision, which comprises the following steps: obtaining monthly-scale land water reserve change delta TWS 0 (ii) a Method for extracting soil water content change delta SM of monthly scale in global scope by utilizing GLDAS hydrological model 1 Snow water equivalent change Δ SWE 1 And vegetation canopy water reserve change delta PCSW 1 (ii) a Extraction of soil water content change delta SM of monthly scale in global scope by using WGHM hydrological model 2 Snow water equivalent change Δ SWE 2 And the water reserve change of the vegetation canopy delta PCSW 2 (ii) a Calculating to obtain the underground water reserve change delta GWS in the month scale 1 And Δ GWS 2 (ii) a Change in groundwater reserves Δ GWS according to measured monthly scale of research area 0 For Δ GWS, respectively 1 And Δ GWS 2 Carrying out evaluation; selecting the underground water reserve change delta GWS with the optimal monthly scale according to the evaluation result Superior food And outputting the result of the change of the un-Show more

DECODIDITION

(all:(drinking water)) AND (all:(fresh water)) AND (description_search:(Earth observation)) AND (description_search:(water detection)) AND (description_search:(drought)) AND (all:(AI))

Results: Analy	tics		ata														
47 37 Documents Patent	16 s Fam																
Market Overview				ustry Trend A	uthority Indicators	Rank		stry Clusters		/CPC Portfo		ration	Citation	Co-As:	signee Litigation 1	Transferred	
Current Assign Aggregated by Lowest S	I EE ubsidiary			₹₹	K Market Ove	rview				Table Chai	t 👻 🕻	3 Indicator	rs 👻 💆		Filters ^{0 applied}		>
Cur. Assignee \$	Patents	▼ Fam. \$	Share 🕻	\$ MC \$ TR \$		Legal Breadth (LB)	Team Size (TE)	Cooperati on (CO)	Market Coverag e (MC)	Radicalne ss (RA)	Technica l Relevanc	Scope (SC)	Share	Patents		Yes 🗢	26
Solutions			24.3%	13.34 5.28	Mendel Biological	1.6	3.9	1.36	13.96	0.6	5.52	0.91	24.3%	9	GRANTED	Yes 🗢	10
Advanced Elemental Tech			5.4%	8.97 2.72	Advanced Elemental Tech	0.8	316	0.97	8 97	1.02	2 72	0.79	5.4%	2	TRANSFERRED	Yes 🗢	0
Tran Bao			5.4%	3.95		0.0	0.10	0.77	0.77	1.02	2.72	0.77	3.470	-		Yes 🗢	0
Abelow Daniel H.			2.7%	2.55	Tran Bao	2.46	0.32	0.93	4.38	0	0	5.5	5.4%	2	> PATENT OFFICE		
Advanced Elemental Technologies			2.7%	7.84 1.23	Abelow Daniel H.	0.94	0.32	0.93	2.55	0	0	1.35	2.7%	1	> DATEC		
Auburn University			2.7%	11.04	Advanced Elemental Technologies	0.44	0.65	0.97	8.78	0	0	0.8	2.7%	1	> DATES		
Mendel Biotechnology			2.7%	7.47 3.58	Auburn University	0	0.25	1.53	11.04	0	0	2.13	2.7%	1	> INDUSTRY SECTOR		
Pivot Bio, Inc.			2.7%	3.15 0					-						> INDUSTRY FIELD		
Precisionlife Ltd			2.7%	0.74 7.49	Mendel Biotechnology	-	-	-	-	-	-	-	2.7%	1	> KIND TYPE		
Takenaka Corporation	1	1	2.7%	0.57 0.27	Pivot Bio, Inc.	2.1	0.95	1	3.15	0	0	2.76	2.7%	1			
Tran Ha				3.51 0													
IPlytics Platform - Versi	on 4.4.0														Cookies © IPlytics G	mbH. All Rights Re	eserved.

(all:(drought)) AND (description_search:(Earth observation)) AND (description_search:(crop field)) AND (description_search:(water demand)) AND (all:(machine learning))

Results: Analy	/tics	Search D	lata															
19 15 Documents Patent	14 ts Farr																	
Market Overview	Over		Indu	ustry Trend	Autho	rity Indicators	Rank	Indus	stry Clusters	IPC	CPC Portfo	lio Concenti		Citation	Co-Ass	signee Litigation	Transferred	
Current Assign Aggregated by Lowest S	1 ee Jubsidiary				<u>•</u> [K Market Ove	rview				Table Chai	rt • 🕻	Indicator	s 🕶 🛓	Export	Filters ^{0 applied}		
Cur. Assignee \$	Patents •	┙ Fam. ¢	Share 🕻	\$ MC\$ TR\$			Legal Breadth	Team Size (TE)	Cooperati on (CO)	Market Coverag	Radicalne ss (RA)	Technica l	Scope (SC)	Share	Patents		Yes 🖨	
Beijing Daheng Ditop Science And Technology Co.			13.3%	0.25 0	÷	Beijing Daheng Ditop Science And Technology	(LB) 1.7	0.73	1	0.25	0	0	0.71	13.3%	2	GRANTED	Yes 🗢	
Pivot Bio, Inc.			13.3%	2.59 0	:	Co.										TRANSFERRED	Yes 🖨	
Alibaba Dharma Institute (hangzhou) Technology Co.			6.7%	0.56 0	:	Pivot Bio, Inc. Alibaba Dharma Institute	1	0.59	0.91	2.59	0	0	1.25	13.3%	2	LITIGATED	Yes 🖨	
China Agricultural University			6.7%	0.26 0		(hangzhou) Technology Co.	0.6	0.62	0.97	0.44	0.86	0	1	6.7%	1	> PATENT OFFICE		
China Entropy Co.			6.7%	1.18 0	:	China Agricultural University	0.83	0.55	0.91	0.26	0	0	0.23	6.7%	1	> DATES		
China Institute Of Water Resources And Hydropower Research			6.7%	0.31 2.27):	China Entropy Co.	0.96	2.26	0.81	1.18	0.21	0	0.7	6.7%	1	INDUSTRY SECTOR INDUSTRY FIELD		
China University Of Geosciences (beijing)			6.7%	0.19 1.89):	China Institute Of Water Resources And	1.26	0.28	0.86	0.35	2.75	0	1.7	6.7%	1	> KIND TYPE		
Department Of Guangxi Forestry Pest Management			6.7%	0.94 0		Hydropower Research China University Of	210	0.65		0.10	24	100	200	6 70/				

Example of standard search

(all:(drinking water)) AND (description_search:(earth observation)) AND (description_search:(drinking water management))

Results: Analytics Search Data						Over Time	📩 🖡 Export
4 Documents						Documents overtime by Publication Year	
Market Overview Over Time Rank Cooperation	n Partner					y-Axis: Documents 🗸 () Bub	ble Size: Contribution Weight 👻 🛈
Organization/Entity	< Market Overview Table Chart		🏥 Table Chart 👻 🗘	Indicators 👻 🛓 Export	Filters O applied	3	
Organization/Entity ≎ Docum Share ≎ Weight ≎	_	Share	Contribution Weight	Documents	> DATES		
Qualcomm Incorporated 3 75% 1	Qualcomm Incorporated	75%	1	3	> CONTRIBUTION WEIGHT	2	
Bnetza 1 25% 0.17 Deutsche Telekom Ag 1 25% 0.17	Bnetza	25%	0.17	1	> TECHNOLOGY GENERATION		
Facultad De Informatica 1 25% 0.17	Deutsche Telekom Ag	25%	0.17	. 1	> RELEASES	1	
Telecom Italia S.p.a. 1 25% 0.17	Facultad De Informatica	25%	0.17	1	COMMITTEE GROUPS STANDARD SETTING ORGANIZATION		
100 1 25% 0.1/ 	Huawei Technologies Sweden Ab	25%	0.17	1	> STANDARD DOCUMENT ID (NORMALIZED)	0 2012 2013 2014 2015 2016	2017 2018 2019
	Telecom Italia S.p.a.	25%	0.17	. 1	> STANDARDS TYPE	● 1 • 0.17	x-Axis: Publication Year (j)
	Tno	25%	0.17	.1	> STATUS > DATA PROVIDER	Qualcomm Incorporated Bnetza Deutsche Telekom Ag Facultad Deutsche Telekom Ag	
						Huawei Technologies Sweden Ab	

Challenge 4 Sustainable Infrastructure

- The analysis revealed research on the
 - After event evaluation of the affected area
 - Creation of a thermal map of a region
 - Urban heat island detection method
 - Systems and methods are provided for processing observation data.
 - Analysis of urban morphology
 - Methods for monitoring and managing urban water resources and hydrology through a network of stations
 - Early warning-prediction
 - Methods for identifying risk level
- Technologies & tools: digital aerial and satellite imagery, photography, computer vision, artificial intelligence, multi sensor input (drones etc), image analysis, statistical analysis and mathematical analysis, airborne and spaceborne sensors, deep learning, ground-based data gathering, remote sensing data, data modelling, open source geographical data, image processing, remote sensing image and high-resolution remote sensing image.

Patents and Standards preliminary search results

Challenge 4 Sustainable Infrastructure

List of keywords used

- Earth Observation
- urban heat islands
- urban planning
- Infrastructure
- satellites

- mapping urban areas
- Ground sensors
- heat island effect
- rural areas
- neighbourhoods

(all:(Earth Observation)) AND (description_search:(urban heat islands)) AND (description_search:(urban planning)) AND (description_search:(infrastructure)) AND (all:(satellites))

Results: Ana	lytics		Data															Publication No. 🗣 Cur. Assignee 🖨 👘 Applica
60 57		, ¬																R0137131A2
Documents Pate	nts I	47 Families																DE10201820726541 Raunhofer-Gesellschaft zur Fraunho
Market Oversiew	0		1			havita Indiantora	Denk	ta dua	ta Cluster					Citation	C- A	ienn Islentin	Transformed	US20210319590A1 Fraunhofer-Gesellschaft zur Fraunho
Market Overview	0.	er mile		ustry frent	Aut	inonty indicators			stry clusters	IFC		uo concenta		Citation	CU-ASS	signee Litigation	Transierieu	69379135661 Fraunhofer-Gesellschaft zur Fraunho
Current Assig	nee				••	了 Market Ove	rview				Table Cha	rt 🗸 🛛 ք	t Indicator	rs 🗸 🖡	Export	Filters		CN112106/06A Fraunhofer-Gesellschaft zur Fraunho
Aggregated by Lowest	Subsidia					Table Chart										0 applied		W0201722123341
	Pater	i ts 👻 Fam.		\$ MC \$	TR 🖨		Legal Breadth	Team Size	Cooperati	Market Coverag	Radicalne	Technica l	Scope	Share	Patents		Yes 🗢 47	P2017122713A
Fraunhofer-			79/	11/	0		(LB)	(12)	011 (00)	e (MC)	33 (NA)	Relevanc	(30)			GRANTED	Yes 🚔 5	JP20022183416A
Förderung der ange-	•		170	1.14		Fraunhofer-Gesellschaft zur Förderung der ange-	2.65	0.34	0.93	1.1	1.4	0	0.72	7%	4			JP2075006650A
LeddarTech Inc.			3.5%	2.51	20	wandten Forschung e.V.										TRANSFERRED	Yes 🗢 3	,P2005111261A Takenaka Komuten Co Takenak
Abelow Daniel H.			1.8%	2.55	0 :	LeddarTech Inc.	3.17	6.11	0.92	2.85	0.53	0	1.62	3.5%	2	LITIGATED	Yes \$ 0	192013050446A
Hanentropy			1.8%	1.3	0:													JP635105482
Communication Co.						Abelow Daniel H.	0.94	0.32	0.93	2.55	0	0	1.35	1.8%	1	7 PATENT OFFICE		TW202143136A Ruon Limited Ruon Li
Laide Technology Co	: 1	1	1.8%	2.23	0	Hanentropy		0.15						4.004		> DATES		W02016097832A1 Mahgoob Ammar
Mahgoub			1.8%	0.24	1.81	Communication Co.	0.61	0.45	0.96	1.3	0	0	0.38	1.8%		> INDUSTRY SECTOR		CN116368355A Hanentropy Communication Hanentr
Ruon Limited			1.8%	0.6	0 :	Laide Technolomy Co	2.06	1.00	0.92	2.22	0	0	1.96	1.9%	1			JP201001485554
Takenaka Komuten (1.8%	0.57	2.45	Laide recimology co.	5.00	4.00	0.95	2.23	U	U	1.90	1.076	1.	> INDUSTRY FIELD		(42)4245841
						Mahgoub	3.08	2.07	4.92	0.24	0.88	1.81	0.47	1.8%	1	> KIND TYPE		82201400944824
																		US20020091591A1
							0.71	0.27	0.00	0.0			1.20	1.0%				US20220156665341 Abelow Daniel H. Abelow

										E	Itows		
Publication No. \$	Cur. Assignee 🛊	Applicant \$	Inventor(s) \$	Title (English) 🛊	Abstract (English) \$	Indus. Sect. 🛊	Active 🛊	TR‡	VC 4	1 ()	oppied		>
R019713142			DANA NEGULA IJUA FLOR	PROCESS OF INTEGRATIO	The invention relates to a.	Electrical engineering	¥85	-	0		GRANTED	Voc A	
DE10201820726541	Raunhofer-Gesellschaft zu	ı Fraunhofer-Gesellschaft zu	GULDE MAX	CORRELATION OF THERMA.	. The invention relates to a.	. Electrical engineering	Yes	0	0.57		donito	turφ	
US20210319590A1	Fraunhofer-Gesellschaft zu	ı Raunhofer-Gesellschaft zu	GULDE MAX	CORRELATION OF THERMA.	. The invention relates to a.	. Instruments	Yes	0	113		TRANSFERRED	YES 🏶	
EP379135961	Fraunhofer-Gesellschaft zu	ı Fraunhofer-Gesellschaft zu	GULDE MAX	CORRELATION OF THERMA.	. Not Anailable	Electrical engineering	Yes	•	159			YES 🏶	
CN112106106A	Fraunhofer-Gesellschaft zu	ı Fraunhofer-Gesellschaft zu	GULDE MAX	Correlating satellite ther	A method and apparatus	Electrical engineering	Yes	0	111	>	PATENT OFFICE		
W02017221233A1			WALDHORN JOSHUA	SYSTEM AND METHOD FO.,	A system and method are.	. Wechanical engineering	No	5.39	0.43				
JP2017122713A			TAVAHASHI MASATO	DIRECTION INFORMATION	PROBLEM TO BE SOLVED:	Instruments	Y85	495	0.15)	DATES		
JP2022183416A			TAVAHASHI MASATO	Direction information acq.	. A method of obtaining di	Instruments	Y85	•	0.25	>	INDUSTRY SECTOR		
JP2015006650A			SUCHI KOICHI	NETHOD OF NANUFACTUR.	PROBLEM TO BE SOLVED:	Other fields	Yes	1204	0.14	>	INDUSTRY FIELD		
JP2005111261A	Takenaka Komuten Co	Takenaka Komuten Co	CHASHI TSUTOWU KAIIA	METHOD AND APPARATUS.	An environment setting	Instruments	Yes	245	0.57				
JP2013050446A			TAVAHASHI MASATO	AZIMUTH DIRECTION INFO	The present invention rel.	Instruments	Yes	0	0.12	>	KIND TYPE		
JP635105482			Not Available	Direction information acq.	. Not Anailable	instruments	No	0	0.18				
TW2021431364	Ruon Limited	Ruon Limited	BURKE TIMOTHY E	USER MEDIA PLATFORM S	In some embodiments, th.	. Electrical engineering	Yes	0	0.6				
W0201609783241	Mahgoub	Ammar Nohammed)	KAMILIDRIS SAUH ELTA	COMMUNICATION BETWEE.	The underlying invention	. Electrical engineering	No	181	0.24				
CN116368355A	Hanentropy Communicatio	r Hanentropy Communicatio	Not Available	Internet of things system	The invention provides a	instruments	Yes	•	13				
JP2018048555A			YOSHINO KAZUTORA	SPACE NUCLEAR FUSION R.	This invention relates to	Mechanical engineering	Yes	0	0.02				
CA264245841			VOON GERARD	TANGIELE (UPSTREAM VER.	Tangible (Upstream Verti	Electrical engineering	No	131	0.01				
KR20140094462A			LEE WOO SUNG	Global nuclear power rea	BACKGROUND OF THE INV	Mechanical engineering	Yes	273	0.02				
US20020091991A1			CASTRO JUAN CARLOS	Unified real-time micropr	A multiport revolving cha.	Electrical engineering	No	131	0.07				
US20220156653.41	Abelow Daniel H.	Abelow Daniel H.	ABELOW DANIEL H	Goals Assembly Layers	Just as fiction has concei	Electrical engineering	Ves		255				

(all:(Earth Observation)) AND (description_search:(urban heat islands)) AND (description_search:(urban planning)) AND (description_search:(infrastructure)) AND (all:(satellites))

ABSTRACT (ENGLISH)

Not Available

DESCRIPTION

The present invention relates to the determination of high spatial resolution thermal maps using thermal satellite imagery. A land surface temperature (LST, Land Surface Temperature) that is determined as precisely as possible is an important part of many different applications, e.g. in the detection of forest fires, the measurement of local maxima in the city temperature distribution (UHI, Urban Heat Island), in the determination of vegetation indices in in agriculture or in modeling the local and global climate. The large-scale and precise measurement of the land surface temperature has only become possible with the use of satellites. For example, the temperature is not measured directly, but derived from the radiance at the detector on board the satellite. The radiance R λ is the radiation (energy) emitted by a surface in a given time in a given spectral range in a given direction and is given in watts per square meter steradian. The detector itself records a gray value image in which the brightness of an individual pixel can be assigned to a measured radiance. Gray values DN are assigned to radiance R, for example, using a linear Read more

 (all:(Earth Observation)) AND (description_search:(urban heat islands)) AND (description_search:(mapping urban areas)) AND (all:(Ground sensors))

Results: Analytics Search Data																		
67 59 Documents Patent	36 s Farr																	
Market Overview	Market Overview Over Time Industry Trend Authority Indicators Rank Industry Clusters IPC/CPC Portfolio Concentration Citation Co-Assignee Litigation Transferred																	
Current Assigr Aggregated by Lowest S	IEE ubsidiary				•	K Market Ove	rview				Table Char	rt 🕶 🛛 🕏	> Indicato	rs 👻 💆	Export	Filters O applied		
Cur. Assignee 🗢	Patents	▼ Fam. \$	\$ Share \$	\$ мс\$ т	R \$		Legal Breadth	Team Size (TE)	Cooperati on (CO)	Market Coverag	Radicalne ss (RA)	Technica l	Scope (SC)	Share	Patents		Yes 🗢	
Cellino Biotech			18.6%	4.84	0	e iller el er el	(15)			e (mc)	0.01	Relevanc	2.00	10.00		GRANTED	Yes 🗢	
			5.1%	0.99	9.47	Cellino Biotech	1.11	4.4	0.84	5	0.31	0	2.09	18.6%	TI .	TRANSFERRED	Yes 🗢	
(usa) Inc.			5.1%	0.96	5.17	Airfusion	0.7	0.7	0.86	0.99	0.74	9.47	1.61	5.1%	3		Voc 🔺	
Kays Steven			3.4%	0.46 0	.28													
LG Electronics Inc.			3.4%	0.37	0	Mcloud Technologies (usa) Inc.	0.66	0.68	0.91	0.99	13.53	4.16	1.4	5.1%	3	> PATENT OFFICE		
LeddarTech Inc.			3.4%	2.51	20											> DATES		
World Charity Division License			3.4%	0.46	.28	Kays Steven	4.59	0.56	0.92	0.46	0	0.28	1.44	3.4%	2	> INDUSTRY SECTOR		
Abelow Daniel H.			1.7%	2.55	0	LG Electronics Inc.	2.03	0.95	0.87	0.37	1.28	0	1.33	3.4%	2			
China Entropy Co.			1.7%	1.18	0											> INDUSTRY FIELD		
Fraunhofer- Gesellschaft zur			1.7%	1.59	0	LeddarTech Inc.	3.17	6.11	0.92	2.85	0.53	0	1.62	3.4%	2	> KIND TYPE		
Förderung der ange-			1 7%	0.02	0	World Charity Division	4.50	0.55	0.02	0.16		- 2.20		2.66				

 (all:(Earth Observation)) AND (description_search:(heat island effect)) AND (all:(rural areas)) AND (all:(neighborhoods))

Example of standard search

• (all:(Earth observation)) AND (all:(heat island effect))

Results: Analytics Search Data						6 Documents	
6 Documents						Search_	Q
Market Overview Over Time Rank Cooperation	1 Partner					Stand. Doc. Id + Supporting C	Jrganization \$ Author(s) \$ Pub. Date \$ Title (English
Organization/Entity	< Market Overview		III Table Chart 👻 🏟	Indicators 👻 🛓 Export	Filters	IEEE 80238	ITU-RINPIA 2014-06-30 NIP 1A LS TO E
Organization/Entity ¢ Docum. → Share ¢ Weight ¢		Share	Contribution Weight	Documents	> DATES	Not Available	Not Available 1999-12-10 Not Available Not Available 1999-10-107 Not Available
Qualcomm Incorporated 3 50% 1					> CONTRIBUTION WEIGHT	Not Avilable	Not Available 2012-08-10 EXUM-EFEC U
					> TECHNOLOGY GENERATION	🗋 Not Anilable	Not Available 2012-05-14 ENVI-EFEC P
		50%	1		> RELEASES		
	Qualcomm incorporated			-3	> COMMITTEE GROUPS		
				, , , , , , , , , , , , , , , , , , ,	> STANDARD SETTING ORGANIZATION		
					STANDARD DOCUMENT ID (NORMALIZED) STANDARDS TYPE		
					> STATUS		
					> DATA PROVIDER	1.6of6	(Page

Challenge in-depth

Floods, Fire, Water resilience and Sustainable Infrastructure

2nd Pain Point workshops

12th and 13th September 2023

FLOODS mapping and prediction – *current situation*

 Currently, the mapping of flooded areas (marine, coastal areas and rivers) during severe events can take weeks, resulting in delays in response and prevention. Public organisations lack reliable tools for predicting, preventing and responding to such events in a timely manner.

Question: Do you agree? Would you like to add anything else?

Flood Risk Intelligence is the key for DRR and CCA

Flood Risk Intelligence

- High Resolution data at building level
- Past, Real-time and Future Climate Change scenarios

BEFORE Flood Maps – Early Warning

- Support Emergency Operations
 - Support Eraly Warning
 - Displacement of people at high risk
 - Put in place rapid mitigation measures for reducing the damages
- Rapid Mapping tools
 - What if scenarios
 - River Breaching or overtopping
 - Extreme Sea Level
- High Resolution Data
 - LIDAR Data

SaferPlaces

Alluvione del 3 maggio 2023 a Faenza località Borgo Durbecco

Confronto tra aree allagate da ripresa aerea e nappe dei tiranti idrici (tempo di ritorno 50 anni) prodotte dalla piattaforma SaferPlaces

06/09/2023

Currents Gaps and Innovation Needs

High resolution data gaps

- Lack of flood data and risk maps
- Uneven coverage at global level
- Parametric Insurance Not Possible

Complex tools for selected experts

- Cost, Time and CPU-intensive Solutions
- Targeted highly skilled
 professionals

Static View of Flood Risk

- Not Possible to simulate a changing Resilient City with Adaptation and Mitigation infrastructures
- Multiple hazards/damages and climate scenarios

AFTER Flood Maps – Post Event Analysis

- Flood Mapping from Satellite images
 - Copernicus Sentinel
 - Cosmo Sky Med
- From Flood Mask to Flood Depth
- Damage Assessment building by building

AFTER Flood Maps – Post Event Analysis

- Flood Mapping from Satellite images
 - Copernicus Sentinel
 - Cosmo Sky Med
- From Flood Mask to Flood Depth
- Damage Assessment building by building

BE READY Flood Maps – Climate Adapataion

- Support Land Use Planning and Adapatation Strategies in Cities
 - Identification of hot spot Risk
 - Support in localizing and designing mitigation measures
 - Physical Barriers
 - Nature based Solution

Digital Twin Solutions

FLOODS mapping and prediction – steps/actions

- Some foreseen steps are:
 - 1. Implementing a **unified repository for historical data** along with a single Application Programming Interface (API)
 - 2. Connecting rapid mapping and climate services to the repository
 - 3. Transforming mapping processes into algorithms for more efficient and automated analysis.
 - 4. Utilising **efficient tools and systems** to support the mapping and analysis tasks.
 - 5. Ensuring proper utilisation of the tools by **a skilled team** with the necessary expertise.

Question: Do you agree? Would you like to add anything else?

FLOODS Climate Services

- 1. Digital Twin and EO, climate and geospatial data integration
- 2. Cloud and API based solution
- 3. Fast algorithms for real time mapping
- 4. Specific routine for what if scenarios
 - 1. Changing Climate
 - 2. Resilient Cities
- 5. User friendly and tailored for non expert in hydrodynamic model

FLOODS mapping and prediction – *desired outcome*

 The desired outcome is to establish a system for rapid mapping that enables predictions and projections to identify risks and define benchmarks. This will involve the development and utilisation of software capable of higher resolution and timely acquisition of satellite information.

Question: Do you agree? Would you like to add anything else?

FIRE prediction, prevention, tracing – current situation

- Currently, there are **several scenarios of fires initiated by different causes** and having a harmful effect on the environment.
- One scenario or use case relates to facilities where waste is stored and prone to spontaneous fires, occurring three or more times a year (in one city). These incidents are particularly prevalent during the summer months when temperatures are higher. While data on previous fire events exist (temperature conditions, height of piles, heat waves, composition of garbage, location of storages or disposals) there is no automated solution available to predict fires and make informed decisions for prevention. As a result, environmental agency inspectors bear the responsibility of monitoring these facilities, placing a significant burden on staff resources.

Question: Do you agree? Would you like to add anything else?

WASTE FIRES

Kees Koudenburg

MDCMR milieudienst Rijnmond

CHALLENGE

WASTE FIRES

 Definition: An uncontrolled fire in a waste storage site

- +/- 77 waste fires/year in the Netherlands
- +/- 60 waste fires/year in Sweden
- +/- 25 waste fires/year in Austria

2

IMPACT

FINANCIAL COSTS

- Soil remediation
- Water treatment
- Damage of buildings and equipment
- Loss of recyclables

SOCIAL COSTS

- Impact on Health
- Sense of security
- Odor complaints
- Redirection of taxes

ENVIRONMENTAL COSTS

Discharge of pollutants like PM_{2.5} and Dioxins

WDCMR milieudienst Rijnmond

WHERE & HOW?

TYPE OF WASTE SITES

- Recycle centres
- Landfills

MAIN CAUSES

- Spontaneous ignition
 - Sweden: 55% of the cases
 - North-Rhine-Westfalen: 33% of the cases
- Unknown
- Lithium/ion batteries

MDCMR milieudienst Rijnmond

CONTRIBUTING FACTORS

- Type of waste / contamination
- Amount of waste
- Ambient temperature (variation and level)
- Ambient moisture content / rainfall
- Wind
- On-site remediating factors

MDCMR^{milieudienst} Rijnmond

USE CASE

Prediction of waste fires with AI by combining remote sensing, historical and weather data.

WDCMR milieudienst Rijnmond

FORESEEN STEPS

EXPLORING BOUNDARIES

AGGREGATING DATA

MODEL DEVELOPMENT

TRAINING THE MODEL / ON-SITE VALIDATION

UTILIZATION OF PREDICTIONS

IMPLEMENTING NOTIFICATIONS

QUESTIONS?

Parallelweg 1 3112 NA Schiedam Tel. 010 246 80 00 info@dcmr.nl www.dcmr.nl

MDCMR milieudienst Rijnmond

FIRE prediction, prevention, tracing – steps/actions

- In this waste fire use case, the foreseen steps are:
 - 1. Exploring the **technical boundaries** to understand the possibilities of providing frequent data updates and establishing the required preparedness frequency.
 - 2. Developing a **comprehensive model using both existing and new data** to predict waste fires.
 - 3. Aggregating all data from past waste fire incidents can be instrumental in this process.
 - 4. , such as the evolving composition of **Training the model based on defined conditions and relevant factors**waste over time and temperature variations.
 - 5. Utilizing the gathered data to **anticipate fire occurrences**, enabling timely preventive actions.
 - 6. Implementing **automated notifications to alert environmental**; agencies about the risk of fire, empowering them to take necessary measures such as engaging contracted companies or industries experienced in managing waste storage facilities. This proactive approach aims to prevent air pollution and minimize potential damage.

Question: Do you agree? Would you like to add anything else?

FIRE prediction, prevention, tracing – desired outcome

 The desired outcome is an automated notification system that promptly identifies the risk of fire (in waste storage facilities). This allows environmental agencies to take swift and appropriate measures, such as engaging qualified companies or industries with expertise in waste management. By preventing fires, this solution aims to mitigate air pollution and reduce potential damage associated with such incidents.

• It is expected to obtain an automated notification system based on the processing data including COPERNICUS data.

Question: Do you agree? Would you like to add anything else?

FIRE prediction, prevention, tracing – other use case

- Another use case or fire scenario (also for wild/forest fire) relates to identifying, tracing, and tracking the cause (and the culprit) of the fire.
- It is challenging for law enforcement agencies to trace the individuals responsible for criminal behavior (e.g., setting fire or dumping substances that cause fire to official waste dumping sites/facilities).
- In the event that a fire consumes part of a waste dumping site, it is vital to be able to compare the site's condition before and after the fire. This comparison would enable us to determine the amount of waste that was burnt and, consequently, evaluate the environmental damage caused.
- Additionally, the same technology could be used to establish whether the amount of waste entities dump into the site matches the amount they report officially.
- There is a lack of effective measures to inform and prevent the cross-border effects.
- The absence of usable data hinders the ability to gather evidence for criminal proceedings.

Question: Do you agree? Would you like to add anything else?

105

FIRE prediction, prevention, tracing – steps/actions

- In this identification, trace and track use case, some foreseen steps are:
 - 1. Conducting a **comprehensive assessment of existing monitoring capabilities** to identify gaps and potential improvements.
 - 2. Defining the **types of substances that are commonly illegally dumpe**d, drawing from previous experiences and specific case studies.
 - 3. Develop a **model that uses both existing and new data** to compare the amount of waste before and after an incident occurs.
 - 4. Aggregate all data from **past waste fire incidents** or incidents involving the dumping of more waste than officially reported.
 - 5. Developing appropriate measures to address these incidents.
 - 6. Establishing timely **communication channels** between environmental agencies, firefighters, and other relevant law enforcement entities to promptly notify them of potential risks and share investigation outcomes.
 - 7. Defining and implementing **possible interventions to tackle (wild) fires** and/or at dumping sites to prevent further illegal activities and mitigate damage.
 - 8. Standardizing the reporting and data collection processes, ensuring the admissibility of the gathered information in both civil and criminal courts. This will enable the establishment of responsibilities in accordance with the applicable laws within specific judiciary systems.

Question: Do you agree? Would you like to add anything else?

FIRE prediction, prevention, tracing – *desired outcome*

- The desired outcome is the implementation of an alert system that sends notifications to competent authorities, aiming to prevent the illegal dumping of waste/ illegal activities that could lead to fires in dumping sites and mitigate the risks of cross-border damage.
- The system would enable us to **compare the state of the waste** dumping site before and after the fire, determine the amount of burnt waste, and define the extent of environmental damage.
- Additionally, the system would be able to verify if the amount of waste entities dump into the dumping site is consistent with their official reports.
- Furthermore, **standardized reports** and information should be readily available and admissible in civil and criminal proceedings. This will facilitate the establishment of responsibilities in accordance with the applicable laws and regulations within the specific judiciary system.

Water Management from space in NL The SAT-WATER program

PROTECT PAIN POINT WORKSHOP WATER CHALLENGE 13 September 2023

Dr. Hans J.C. van Leeuwen, STOWA Programleader SAT-WATER & Dutch Water authorities & Ministries & Het Waterschapshuis

- Agenua.
- **I** Introduction: The Sat-Water Program for the Dutch WaterBoards
- **SAT-WATER** Program: blue print for operational Information for national policies?
- **SAT-WATER Program & Cooperation in European context**
- **PROTECT Challenge: Next R&D of Climate resilient Water solutions (what are the needs)**

Information production Watermanagement Satellite Applications = SATWATER Program Slogan: "Van Wetenschap naar Waterschap" or "From Science to WaterManagement Landingsbaan/Launch: "from innovation to implementation" Users: Waterboards, Ministries, DrinkingWatercompanies, etc.

Stowa 50 JAR PRÉTECT / hetWaterschapshuis

Information acquisition (Satellite & Field)

R

- □ Knowledge, Algorithms, Field experience
- Processing & integration (Data Science)

50

stowa

- Implementation of Application (Open data & SW)
- □ Validation (Technical & Use/Organization)
- Organization (acceptation, Business case, & Procurement Process)
- □ Hybrisation with working process (CoP)
- Acceptance and Scaling up (more use)
- Management & Maintenance/continuity (Archive)

hetWaterschapshuis

SAT WATER

Van Wetenschap Naar Waterschar

Landings		Soil-Wat	Wat	terMa	nadem	ent				NL	
Baan/		er	Verdamping		nagem	♥(peat)dike	Mater	Digital	Denth	Veranderdetectie	
Launch		OWASIS	iration	Moisture	Rural Subsidence	Monitoring	Quality	inspection	Canal	objects	Indicator
Phase	step					-	HDSR	WDOD			
Idea	1										
Research	2									SBIR fase 1	
Pilot/demo	3	ESA /STO WA/SBIR	STOWA/SBIR	SBIR	SBIR	STOWA	ESA			SBIR fase 1/2	
Validation (technical/ organisation)	4	SBIR OWASIS	SBIR SATDATA 2.0	SBIR soil moisture	SBIR Rural Subsidence i-ZAK/BODIS STOWA	SBIR waterschap / STOWA	CYMONS			SBIR fase 2	Embedding national Water Instrumentation NHI
Business Case & Central Procurement & acceptance	5		BC SATDATA 3.0	BC bodemvocht	Validation & acceptance	Validation	Validation	Βζ εκίηρεα	1_	BC verander detectie	
Operational Information	6	OWASIS	SATDATA 3.0					Disruptive			
COP/Support											

VALIDATION

ORGANISATION

Input to integral systems (BIGDATA & AI) **Smart Governance on water management**

Dutch Deltaprogramma Zoetwater

HydroLogic

esa

SAT WATER

OWASIS-NL Improved water availability information for water manager

- Efficient water management is crucial to the Netherlands dry.
- Drought en availability of sweet/fresh water is becoming more and more problematic due to climate change.
- Lack of information on wateravailability and **available storage capacity** is a growing issue in current operational watermanagement.

Evapotranspiration deficit (mm) 1-23 July 2018

100

-median Etact/median Etref

Relatieve verdamping eind juni slaat om: groeibeperking van gewassen zichtbaar: er is bijna geen water meer om te verdampen door gewas

OWASIS on drought & waterexcess: practical level

- 1. Actual Moisture Content soil profile Water management area (peilgebied): Waterboards use OWASIS to assess the status of profile watercontent every day (for operational measures in times of waterexcess and drought)
- 2. To pump or keep the water in management area: Waterboarrds use OWASIS in combination with weather predictions to advice the water managers
- **3.** Waterbalance: Waterboards use OWASIS as indicator for interactive waterbalance insights (e.g. Waterschap Brabantse Delta in their crisisroom for alerting and communication or water management measures)
- **4.** Information dashboard ARK/NZK (amsterdam region): Ministry Infra & Water (Rijkswaterstaat) use OWASIS to present regional difference in soil moisture for mutual smart management (between the water areas).

OWASIS: what on policy level?

- **1. Effect/impact monitoring:** Waterboards use OWASIS to evaluate the impact/effects on the change from winter to summer waterlevels
- 2. Validation waterbalance. Indirectly OWASIS is used as indicator to validate waterbalance models and daily (field)measurements
- 3. Operational **Decision Support systems** (VIDENTE, peilbeheer)
- 4. To **advice waterboards** on the transition from summer to winter water levels (& vice versa)
- And many other functions in the policy cycle not yet discovered (reference level (0-meting), time-series (trends/anomalies), monitoring & evaluation, Cost-benefits and efficiency, etc.

Examples RS use for Climate Adaptation (on top of former water excess and drought examples) related to the Water Challenge (PROTECT PCP)

□ Greenhouse gas emission indicators (water management):

- In case of droughts: CO2 emission by peat oxidation (subsidence)
- In case of water excess: CH4 en N2O emission in anaerobic soil conditions
- □ Salinization risks (due to increase of drought and seepage pressure by sea level rise)
- Insight in the available sweet water storage in large Lakes like Ijsselmeer (relevant for the Dutch National LCW commission decision support)
- Insight in the amount of local water storage (saturation level) in soils in times extreme climate conditions in management areas (to anticipate timely for local flooding (e.g. Limburg 2021)
- □ Insight in drought conditions (agriculture & nature), irrigation limitations/ban, etc
- Transition/monitoring of the rural area functions in future (distribution of blue, green grey infrastructure)

 \Box etc.

In de grijze gebieden kent het waterschap een 'vrij afwaterend watersysteem' en zijn er geen peilbesluiten Press VK'14mrt23

140323 © de Volkskrant

Bron: Unie van Waterschappen, Waterschap Scheldestromen; kaartgegevens hWh

Gewenst waterpeil niet altijd haalbaar

Aandeel van gebied waarin het waterpeil technisch haalbaar is

Scheldestromen	47%
Schieland en de Krimpenerwaard	85%
Fryslân	90%
Hollandse Delta	93%
amstel, Gooi en Vecht	94%
e Stichtse Rijnlanden	95%
Brabantse Delta	95%
Delfland	97%
	Voor de overige water- en boogheemraadschappen is

het peilbesluit voor 99% of 100% technisch op orde.

140323 © de Volkskrant. Bron: Unie van Waterschappen

Duizenden hectaren voldoen niet aan overlastnorm

Aantal hectaren waar (nog) niet wordt voldaan aan normen voor wateroverlast, per waterschap (2021)

hetWaterschapshuis

Business case based on needs WaterBoards

Belangrijkste functionaliteiten van een data platform

SAT-WATER Program: Blue print for National use

Waterboards, ministries: monitoring <u>needs</u> in the frame of:
Delta Program (oa. DPRA), Sweet/Silt Water, Subsidence, etc.
Agriculture transition (oa. subsidence, waterquality, waterquantity)
Natura2000 policy (waterquality, waterquantity)
Climate Adaptation (DONAS, 6 ministries) (drought, waterexcess, heat, sealevel-rise/floods) & related emissions of greenhouse gasses
Etc.

SAT-WATER Program & reach out for Europe

National monitoring (water management) and **need for cooperation** with other similar EU-member states programmes on the EC policies in order to learn from each other and cooperate on supra national level is essential (e.g. watershed level, atmosphere and coastal issues, etc.) !!

Exchange mechanisms between national & European (member state) programmes need to be encouraged! Discussion on how to join? (Copernicus, ESA or user groups?)

Watermanagement regional/national/European infrastructure

The 21 regions of Europe, as defined by river basins, climate and socio-economics. Right insert: the smaller "water regions" for the Danube river basin. The 21 regions of Europe, as defined by river basins, climate and socio-economics. Right insert: the smaller "water regions" for the Danube river basin.

European/national water monitoring

- Monitoring Water Quantity and Quality (regular): <u>https://www.rijkswaterstaat.nl/en/water/water-management</u>
- Monitoring extreme high water & Early warning (crisis): <u>https://www.rijkswaterstaat.nl/en/water/water-management/monit</u> <u>oring/efas</u>
- Main waterway network & maintenance, construction & traffic management (European level): for economic drivers like Transport, Storage, recreation cooperation Netherlands, Germany (Rhine), Belgium (Scheldt): <u>https://www.eurisportal.eu/</u>

European/national/regional watermanagement (<u>https://www.efas.eu/en/monitoring</u>)

- EFAS collects near real-time water level and river discharge observations to display national/regional threshold exceedances
 - European wide, observation-based flood monitoring:
 - EU-EO & insitu/model based instrument <u>https://emergency.copernicus.eu/mapping/ems/rapid-mapping-portfolio</u>
 - National data on hydrology & meteo & satellite based information: <u>https://www.efas.eu/en/share-your-data-efas</u>
 - <u>Dutch examples on national operational EO based information products: e.g. OWASIS (hydrology), WIWB (meteo)</u>
 - Gridded meteorological maps (CEMS)
 - National data on hydrology & meteo & satellite based information: <u>https://www.efas.eu/en/share-your-data-efas</u> <u>Dutch examples</u> on national operational information products: e.g. KNMI, WIWB (meteo)

• EFAS provides a number of hydrological monitoring products based on LISFLOOD simulations driven by observed meteorological input

Soil moisture and snow water equivalent (mostly model based, maps on national initial conditions),
 <u>Dutch examples on national operational EO based information products: e.g. LIBV, soil moisture & OWASIS</u>)

PROTECT Challenge: Next R&D of Climate resilient Water solutions through PCP

- Who are the relevant users?
- What is missing now?
- What is needed for the future?
- PROTECT PCP (Climate-EO R&D shopping list).
- How to test innovative Climate resilient Water solutions?

Needs (hWh) from PROTECT water Challenge: Cooperation on EU scale (watermanagement)

- Need for exchange of national information &knowledge(!) is crucial for European scale information monitoring. Therefore a combination of forces of knowledge, Government & business/market (KGB model) is required!
- Need for scaling: embedding the national/regional scale (local finetuning, validation & acceptation) into this framework in order to cooperate is also a prerequisite
- Therefore the (inter)<u>operability</u> information provision (including, standards, management & maintenance of archives, procurement/contracting, regulations on AI, IP, etc.) on national level to support regional/national/European waterpolicies is crucial
- This requires a national strategy & implementation on continous monitoring/information production, which is qualified (calibrated and validated to local/national and European standards (exchange)

Example of bleuprint (?) of information production on EO (Earth Observation):

The Dutch Waterschapshuis and STOWA national water management information production hub (through its SAT-WATER programme)

Climate resilient water solutions – *current state*

- Currently, there is unpredictability in the demand for fresh water, and there is a lack of connection between the supply and demand of fresh water.
- Regulations exist in each EU Member State that determine the use of water from various sources, such as channels, treated sewage water, and drinking water, and different purposes such as for agriculture.
- There is a **lack of a common language among different stakeholders** (users involved such water companies, industry, farmers, etc.) involved in the water cycle chain.
- While data is available in certain regions, there is a lack of connectivity between data hubs and repositories.

Question: Do you agree? Would you like to add anything else?

135

Climate resilient water solutions – *steps/actions*

- In this use case, some foreseen steps are:
 - 1. Gaining a **comprehensive understanding** of the current situation, including existing mechanisms and policies in place.
 - 2. Exploring how **drought-related issues** regarding water supply and demand are addressed and **determining the type of new services** needed to support coping with stress situations based on common language.
 - 3. Identifying the **relevant responsible public authorities and their intended uses**, while also identifying any **existing data gaps**.
 - 4. Identifying the **different users and purposes for the supply of water** like in agriculture.
 - Developing a system that combines EO data and utilizes Artificial Intelligence (AI) for modelling purposes. This system should effectively integrate and analyze relevant data to provide actionable insights.

Question: Do you agree? Would you like to add anything else?

Climate resilient water solutions – *steps/actions*

• In this use case, some foreseen steps are:

- 1. Utilizing **database-driven solutions to enhance the distribution of water**. This involves identifying factors such as saline concentration, pollution levels, substances, algae presence etc., using EO data, to ensure efficient and informed water distribution.
- 2. Providing **accurate information to water authorities** regarding who needs to collect water, when and how to distribute it in a treated manner, to meet specific demands and avoid unnecessary discharge of sweet water.
- 3. Establishing a resilient system where different stakeholders, including water companies, farmers, and industries, collaborate during drought periods. This collaboration should be based on a comprehensive understanding of the water conditions and quality requirements for different purposes. Guidance and decisions from a policy perspective should be achieved to comprehend the consequences and combine relevant data throughout the entire water cycle chain under a unified taxonomy.

Question: Do you agree? Would you like to add anything else?

137

Climate resilient water solutions – *desired outcome*

- The desired outcome is a predictable demand for fresh water.
- The **regulatory landscape and policies** should be clearly defined, providing a cohesive framework for water management.
- The system should be **capable of effectively handling stress situations** through data-driven decision making and interventions.
- The supply and demand for fresh water should be interconnected based on diverse needs of users such as farmers, companies, and industries, while also considering the specific conditions and water quality requirements for different purposes.
- A comprehensive understanding of the consequences and a combined approach to relevant data within the entire water cycle chain should be achieved and facilitated by effective policy guidance.

Question: Do you agree? Would you like to add anything else?

Sustainable & resilient infrastructure – *current state*

 Currently, there is a need for integrated sustainable re-development, restoring & climate adaptation of existing neighborhoods both in urban and rural areas.

Question: Do you agree? Would you like to add anything else?

What is Forum Virium Helsinki?

- A non-profit innovation company of the City of Helsinki.
- Established in 2005.
- Three programmes: smart city, smart mobility and data.
- Employs 60 top experts.
- Annual project funding of EUR 6–10 million.
- The company is financed by the City of Helsinki and the EU.
- Customer satisfaction 4.4/5.
- Impact:
 - New companies
 - Smart Kalasatama
 - Open data

ability to utilise data, new technologies and digitalisation.

utilise Helsinki as a development platform. revitalising and agile expert organisation.

Experience with PCP

Co-creation Agile pilots Artificial IOT Data Intelligence IOT Data Smart city Sustainable development Robotics MyData Smart Mobility

- Silver "for new technologies to assist elderly people in their everyday lives" https://www.silverpcp.eu/
- Select4Cities "to develop a data-driven, Internet-of-Everyt hing (IoE) platform for large-scale urban co-creation" https://www.select4cities.eu/
- FABULOS "to buy R&D for the operations of fleets of autonomous buses and to accelerate the introduction of automated last-mile solutions entering the European market" https://fabulos.eu/
- Al4Cities "to find solutions to make their mobility and energy domains more carbon neutral with aid of Al" <u>https://ai4cities.eu/</u>
- (+upcoming one, stay tuned)

Some of our use cases

- Nature-based solutions to tackle flood risks in case of heavy rains, especially surrounding critical infrastructure (e.g. railways, hospitals, energy network etc.).
 - Additionally: finnish buildings largely wooden, massive insulation etc, can't survive flooding
 - Snow (amount, moisture level) growing challenge
- Heat mitigation with NBS
- Local energy production/energy renovations

Some of our use cases, cont'd

- EO for identifying the most critical sites (e.g. urban heat island, areas losing greenery/impervious surfaces) and potential sites for solar etc.
- Urban hydrology after storms/heavy rain
- Early warning/alert systems for authorities/public
- Existing NBS and implementation strategies
- Tools for evaluating impact of NBS/climate change/future urban development/construction to urban heat (effectiveness of adaptation measures)
- Impact/cost evaluation tools for energy renovations (https://helsinginilmastoteot.fi/en/energy/energy-renovation-wha t-why-and-how/)

Sustainable & resilient infrastructure – steps / actions

- In this use case, some foreseen actions are:
- 1. Developing an **integrated solution (using EO data)** with regard to the re-development, restoration and climate adaptation of existing neighborhoods to address/prevent:
 - heat island effects
 - flooding
 - droughts
 - water scarcity
 - in neighborhoods & rural areas

Question: Do you agree? Would you like to add anything else?

145

Sustainable & resilient infrastructure – steps/ actions

- In this use case, other foreseen actions are:
 - 1. Measuring the **effectiveness of climate adaptation measures** and applied adaptations.
 - 2. Developing an **integrated climate service that combines possible adaptation measures** such as heat island and water scarcity prevention, measures that address flooding and droughts in neighborhoods & rural areas for modelling purposes and possible scenarios with existing limitations (e.g., narrow streets, protected historical monumental buildings, bridges, water scarcity faced by farmers, etc.) and given other priorities such as green, energy transition, parking.
 - 3. Exploring **most common limitations, barriers and impossibilities** that stand in the way of implementing climate adaptation of the existing infrastructure. Using the outcomes to find an innovative solution given these limitations

Question: Do you agree? Would you like to add anything else?

Sustainable & resilient infrastructure – desired outcome

The challenge is to find a **solution to climate adaptation for this complex situation** (vulnerable urban &/ rural areas with a combination of heat, flooding, water scarcity and droughts) using integrated climate services.

Question: Do you agree? Would you like to add anything else?

Open discussion

Feedback

2nd Pain Point workshops

12th and 13th September 2023

Other use cases

- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	

Conclusions

Next Steps

Document title (edit in "insert/header and footer")

12th and 13th September 2023

Conclusions and next steps

- The OMC documents will integrate the input from Pain Point Workshops, including specific questions.
- Public buyers can participate as observers in the e-Pitching sessions (18 – 19 September)
- Publication of the PIN (20 September) interested public buyers can be listed,
- Open Market Consultation (15 -16 November) participation of public buyers is important.
- Preparation of the **Public Buyers Group** expression of interest
- Development of the **Business Case** based on the OMC results
- Design of the Procurement Strategy based on the OMC results

Thank you!

Contact:

Stephan Corvers s.corvers@Corvers.com

Ana Lucia Jaramillo a.jaramillo@Corvers.com

Matty van Sloten <u>m.vansloten@Corvers.com</u>

This project has received funding from the Horizon Europe Framework Programme (HORIZON) under grant agreement No 101060592